【題目】已知橢圓經過點
,長軸長是短軸長的2倍.
(1)求橢圓的方程;
(2)設直線經過點
且與橢圓
相交于
兩點(異于點
),記直線
的斜率為
,直線
的斜率為
,證明:
為定值,并求出該定值.
【答案】(1) ;(2)1。
【解析】
(1) 由橢圓的方程可知,橢圓的焦點在
軸上,經過點
,可以求出
,長軸長是短軸長的2倍,可以求出
,由此可以求出橢圓的標準方程。
(2)設出直線的方程,與橢圓的方程聯立,根據一元二次方程根與系數的關系,對
進行化簡。
(1)由橢圓可知橢圓的焦點在
軸上,經過點
所以
=1,又因為長軸長是短軸長的2倍,所以
=2,因此橢圓的標準方程為:
。
(2)若直線的斜率不存在,即直線的方程為
,與橢圓只有一個交點,不符合題意。
設直線的斜率為
,若
=0,直線
與橢圓只有一個交點,不符合題意,故
。
所以直線的方程為
,即
, 直線
的方程與橢圓的標準方程聯立得:
消去
得,
,
設,則
,
,
把
代入上式,得
,命題得證。
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+mx+n(m,n∈R)滿足f(0)=f(1),且方程x=f(x)有兩個相等的實數根.
(1)求函數f(x)的解析式;
(2)當x∈[0,3]時,求函數f(x)的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知平面上動點P到定點的距離比P到直線
的距離大1.記動點P的軌跡為曲線C.
(1)求曲線C的方程;
(2)過點的直線
交曲線C于A、B兩點,點A關于x軸的對稱點是D,證明:直線
恒過點F.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列
的前
項和,對任意
,都有
(
為常數).
(1)當時,求
;
(2)當時,
(ⅰ)求證:數列是等差數列;
(ⅱ)若數列為遞增數列且
,設
,試問是否存在正整數
(其中
),使
成等比數列?若存在,求出所有滿足條件的數組
;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以下四個命題:①設,則
是
的充要條件;②已知命題
、
、
滿足“
或
”真,“
或
”也真,則“
或
”假;③若
,則使得
恒成立的
的取值范圍為{
或
};④將邊長為
的正方形
沿對角線
折起,使得
,則三棱錐
的體積為
.其中真命題的序號為________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的離心率為
,橢圓
:
經過點
.
(1)求橢圓的標準方程;
(2)設點是橢圓
上的任意一點,射線
與橢圓
交于點
,過點
的直線
與橢圓
有且只有一個公共點,直線
與橢圓
交于
,
兩個相異點,證明:
面積為定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com