【題目】已知圓外的有一點
,過點
作直線
.
(1)當直線過圓心
時,求直線
的方程;
(2)當直線與圓
相切時,求直線
的方程;
(3)當直線的傾斜角為
時,求直線
被圓
所截得的弦長.
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的離心率為
,以
為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
(1)求橢圓的標準方程;
(2)已知點,和平面內一點
(
),過點
任作直線
與橢圓
相交于
,
兩點,設直線
,
,
的斜率分別為
,
,
,
,試求
,
滿足的關系式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有兩枚大小相同、質地均勻的正四面體玩具,每個玩具的各個面上上分別寫著數字1,2,3,5,同時投擲這兩枚玩具一次,記為兩個朝下的面上的數字之和.
(1)求事件“不小于6”的概率;
(2)“為奇數”的概率和“
為偶數”的概率是不是相等?證明你作出的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,以坐標原點為極點,
軸的非負半軸為極軸建立極坐標系.已知點
的極坐標為
,曲線
的參數方程為
(
為參數).
(1)直線過
且與曲線
相切,求直線
的極坐標方程;
(2)點與點
關于
軸對稱,求曲線
上的點到點
的距離的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
,橢圓
過點
,直線
交
軸于
,且
,
為坐標原點.
(1)求橢圓的方程;
(2)設是橢圓
的上頂點,過點
分別作直線
交橢圓
于
,
兩點,設這兩條直線的斜率分別為
,且
,證明:直線
過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一個不透明的盒子中,放有標號分別為,
,
,
的四個大小相同的小球,現從這個盒子中,有放回地先后取得兩個小球,其標號分別為
,
.
(1)求事件的概率;
(2)求事件的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,直角三角形的頂點坐標
,直角頂點
,頂點
在
軸上,點
為線段
的中點,三角形
外接圓的圓心為
.
(1)求邊所在直線方程;
(2)求圓的方程;
(3)直線過點
且傾斜角為
,求該直線被圓
截得的弦長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com