已知函數f(x)=是奇函數.
(1)求實數m的值;
(2)若函數f(x)在區間[-1,a-2]上單調遞增,求實數a的取值范圍.
科目:高中數學 來源: 題型:解答題
(本題滿分12分)
某風景區有40輛自行車供游客租賃使用,管理這些自行車的費用是每日72元。根據經驗,若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超出6元,則每超過1元,租不出的自行車就增加3輛。為了便于結算,每輛自行車的日租金(元)只取整數,并且要求出租自行車一日的總收入必須高于這一日的管理費用,用
(元)表示出租自行車的日凈收入(即一日中出租自行車的總收入減去管理費用后的所得)。
(1)求函數的解析式及其定義域;
(2)試問當每輛自行車的日租金定為多少元時,才能使一日的凈收入最多?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
首屆世界低碳經濟大會在南昌召開,本屆大會以“節能減排,綠色生態”為主題.某單位在國家科研部門的支持下,進行技術攻關,采用了新工藝,把二氧化碳轉化為一種可利用的化工產品.已知該單位每月的處理量最少為400噸,最多為600噸,月處理成本(元)與月處理量
(噸)之間的函數關系可近似的表示為:
,且每處理一噸二氧化碳得到可利用的化工產品價值為100元.
(Ⅰ)該單位每月處理量為多少噸時,才能使每噸的平均處理成本最低?
(Ⅱ)該單位每月能否獲利?如果獲利,求出最大利潤;如果不獲利,則國家至少需要補貼多少元才能使該單位不虧損?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分13分)為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度(單位:cm)滿足關系:
,若不建隔熱層,每年能源消耗費用為8萬元.設
為隔熱層建造費用與20年的能源消耗費用之和.
(Ⅰ)求的值及
的表達式;
(Ⅱ)隔熱層修建多厚時,總費用達到最小,并求最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com