精英家教網 > 高中數學 > 題目詳情

【題目】某工廠為了對研發的一種產品進行合理定價,將該產品按事先擬定的價格進行試銷,得到如下數據:

單價

9

9.2

9.4

9.6

9.8

10

銷量

100

94

93

90

85

78

(1)求回歸直線方程

(2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關系,且該產品的成本是5元/件,為使工廠獲得最大利潤,該產品的單價應定為多少元?(利潤銷售收入成本)(附:對于一組數據,其回歸直線的斜率和截距的最小二乘估計分別為:,),,

【答案】(1);(2)元.

【解析】試題分析:

(1)由題意可得,結合公式計算可得回歸方程為;

(2)利用回歸方程的預測方法結合均值不等式的結論可得為使工廠獲得最大利潤,該產品的單價應定為9.5元.

試題解析:

(1)由題,,而, ,又

從而,因此;

(2)設該產品的單價定為元,工廠獲得的利潤為元,則 ,當且僅當時取等號.因此單價定為元.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某地區以“綠色出行”為宗旨開展“共享單車”業務.該地區某高級中學一興趣小組由20名高二級學生和15名高一級學生組成,現采用分層抽樣的方法抽取7人,組成一個體驗小組去市場體驗“共享單車”的使用.問:

(Ⅰ)應從該興趣小組中抽取高一級和高二級的學生各多少人;

(Ⅱ)已知該地區有, 兩種型號的“共享單車”,在市場體驗中,該體驗小組的高二級學生都租型車,高一級學生都租型車.

(1)如果從組內隨機抽取3人,求抽取的3人中至少有2人在市場體驗過程中租型車的概率;

(2)已知該地區型車每小時的租金為1元, 型車每小時的租金為1.2元,設為從體驗小組內隨機抽取3人得到的每小時租金之和,求的數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】A={x|2x2﹣7x+3≤0},B={x||x|<a}
(1)當a=2時,求A∩B,A∪B;
(2)若(RA)∩B=B,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某農科所對冬季晝夜溫差大小與某反季節大豆新品種發芽多少之間的關系進行分析研究,他們分別記錄了121日至125日的每天晝夜溫差與實驗室每天每100顆種子中的發芽數,得到如下資料:

日 期

121

122

123

124

125

溫差°C

10

11

13

12

8

發芽數(顆)

23

25

30

26

16

該農科所確定的研究方案是:先從這五組數據中選取2組,用剩下的3組數據求線性回歸方程,再對被選取的2組數據進行檢驗.

1)求選取的2組數據恰好是不相鄰2天數據的概率;

2)若選取的是121日與125日的兩組數據,請根據122日至124日的數據,求出y關于x的線性回歸方程;

3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

(注:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位,直線的參數方程為為參數),圓的極坐標方程為.

(1)求直線的普通方程與圓的直角坐標方程;

(2)設圓與直線交于兩點,若點的直角坐標為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= ﹣a是奇函數
(1)求實數a的值;
(2)判斷函數在R上的單調性并用函數單調性的定義證明;
(3)對任意的實數x,不等式f(x)<m﹣1恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=log2(4x)log2(2x)的定義域為 . (Ⅰ)若t=log2x,求t的取值范圍;
(Ⅱ)求y=f(x)的最大值與最小值,并求取得最值時對應的x的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】f(x)=(m﹣1)x2+2mx+3為偶函數,則f(x)在區間(2,5)上是(
A.減函數
B.增函數
C.有增有減
D.增減性不確定

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=(x﹣a)(x+2)為偶函數,若g(x)= ,則a= , g[g(﹣ )]=

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视