【題目】某地區有小學21所,中學14所,大學7所,現采用分層抽樣的方法從這些學校中抽取6所學校對學生進行視力調查.
(1)求應從小學、中學、大學中分別抽取的學校數目;
(2)若從抽取的6所學校中隨機抽取2所學校做進一步數據分析,
①列出所有可能的抽取結果;
②求抽取的2所學校均為小學的概率.
科目:高中數學 來源: 題型:
【題目】設集合I={1,2,3,4,5},選擇I的兩個非空子集A和B,要使B中最小的數大于A中最大的數,則不同的選擇方法共有
A.50種 B.49種 C.48種 D.47種
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設等比數列的前n項和為Sn,已知a1=2,且4S1,3S2,2S3成等差數列.
(Ⅰ)求數列的通項公式;
(Ⅱ)設,求數列{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠有工人1000名,其中250名工人參加短期培訓(稱為類工人),另外750名工人參加過長期培訓(稱為
類工人).現用分層抽樣方法(按
類,
類分二層)從該工廠的工人中共抽查100名工人,調查他們的生產能力(生產能力指一天加工的零件數).
(1)類工人和
類工人中個抽查多少工人?
(2)從類工人中的抽查結果和從
類工人中的抽查結果分別如下表1和表2.
表1:
表2:
① 先確定,
,再完成下列頻率分布直方圖,就生產能力而言,
類工人中個體間的差異程度與
類工人中個體間的差異程度哪個更小?(不用計算,可通過觀察直方圖直接回答結論)
② 分別估計類工人和
類工人生產能力的平均數,并估計該工廠工人的生產能力的平均數(同一組中
的數據用該組區間的中點值作代表).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知是二次函數,不等式
的解集是
,且
在區間
上的最大值是12.
(1)求的解析式;
(2)是否存在自然數,使得方程
在區間
內有且只有兩個不等的實數根?若存在,求出
的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓的方程:
(1)求m的取值范圍;
(2)若圓C與直線相交于
,
兩點,且
,求
的值
(3)若(1)中的圓與直線x+2y-4=0相交于M、N兩點,且OM⊥ON(O為坐標原點),求m的值;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司今年年初用25萬元引進一種新的設備,投入設備后每年收益為21萬元.該公司第n年需要付出設備的維修和工人工資等費用的信息如下圖.
(1)求;
(2)引進這種設備后,第幾年后該公司開始獲利;
(3)這種設備使用多少年,該公司的年平均獲利最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的左、右焦點分別是
,下頂點為
,線段
的中點為
(
為坐標原點),如圖,若拋物線
與
軸的交點為
,且經過
點.
(1)求橢圓的方程;
(2)設,
為拋物線
上的一動點,過點
作拋物線
的切線交橢圓
于點
、
兩點,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一次研究性學習有“整理數據”、“撰寫報告”兩項任務,兩項任務無先后順序,每項任務的完成相互獨立,互不影響.某班研究性學習有甲、乙兩個小組.根據以往資料統計,甲小組完成研究性學習兩項任務的概率都為,乙小組完成研究性學習兩項任務的概率都為
.若在一次研究性學習中,兩個小組完成任務項數相等.而且兩個小組完成任務數都不少于一項,則稱該班為“和諧研究班”.
(1)若,求在一次研究性學習中,已知甲小組完成兩項任務的條件下,該班榮獲“和諧研究班”的概率;
(2)設在完成4次研究性學習中該班獲得“和諧研究班”的次數為,若
的數學期望
,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com