【題目】已知 =﹣1,求下列各式的值: (Ⅰ)
;
(Ⅱ) cos2( +α)﹣sin(π﹣α)cos(π+α)+2.
科目:高中數學 來源: 題型:
【題目】私家車的尾氣排放是造成霧霾天氣的重要因素之一,因此在生活中我們應該提倡低碳生活,少開私家車,盡量選擇綠色出行方式,為預防霧霾出一份力.為此,很多城市實施了機動車車尾號限行,我市某報社為了解市區公眾對“車輛限行”的態度,隨機抽查了50人,將調查情況進行整理后制成下表:
(Ⅰ)完成被調查人員的頻率分布直方圖;
(Ⅱ)若從年齡在[15,25),[25,35)的被調查者中各隨機選取2人進行追蹤調查,求恰有2人不贊成的概率;
(Ⅲ)在(Ⅱ)的條件下,再記選中的4人中不贊成“車輛限行”的人數為,求隨機變量
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=x2eax , a>0.
(1)證明:函數y=f(x)在(0,+∞)上為增函數;
(2)若方程f(x)﹣1=0有且只有兩個不同的實數根,求實數a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數y=f(x)的導數y′=f′(x)仍是x的函數,就把y′=f′(x)的導數y″=f″(x)叫做函數y=f(x)二階導數,記做y(2)=f(2)(x).同樣函數y=f(x)的n﹣1階導數的導數叫做y=f(x)的n階導數,表示y(n)=f(n)(x).在求y=ln(x+1)的n階導數時,已求得 ,
,根據以上推理,函數y=ln(x+1)的第n階導數為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在側棱和底面垂直的三棱柱ABC﹣A1B1C1中,AB=1,AC= ,BC=2,AA1=
,點P為CC1的中點.
(1)求證:A1C⊥平面ABP;
(2)求平面ABP與平面A1B1P所成二面角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某村莊擬修建一個無蓋的圓柱形蓄水池(不計厚度).設該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設建造成本僅與表面積有關,側面的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12 000π元(π為圓周率).
(1)將V表示成r的函數V(r),并求該函數的定義域;
(2)討論函數V(r)的單調性,并確定r和h為何值時該蓄水池的體積最大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為增強市民的節能環保意識,某市面向全市征召義務宣傳志愿者.從符合條件的500名志愿者中隨機抽取100名志愿者,其年齡頻率分布直方圖如圖所示,其中年齡分組區間是:[20,25),[25,30),[30,35),[35,40),[40,45].
(Ⅰ)求圖中x的值并根據頻率分布直方圖估計這500名志愿者中年齡在[35,40)歲的人數;
(Ⅱ)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取20名參加中心廣場的宣傳活動,再從這20名中采用簡單隨機抽樣方法選取3名志愿者擔任主要負責人.記這3名志愿者中“年齡低于35歲”的人數為X,求X的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=log2(2x+1)﹣ .
(1)證明:對任意的b∈R,函數f(x)=log2(2x+1)﹣ 的圖象與直線y=
+b最多有一個交點;
(2)設函數g(x)=log4(a﹣2x),若函數y=f(x)與函數y=g(x)的圖象至少有一個交點,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com