精英家教網 > 高中數學 > 題目詳情

【題目】已知拋物線的頂點為原點,焦點為圓的圓心.經過點的直線交拋物線兩點,交圓兩點, 在第一象限, 在第四象限.

(1)求拋物線的方程;

(2)是否存在直線,使的等差中項?若存在,求直線的方程;若不存在,請說明理由.

【答案】(1);(2).

【解析】試題分析:(1)根據圓的圓心為拋物線的焦點,可求得 ,即可求得拋物線方程;(2)若是等差中項,那么 ,那么 ,再根據拋物線的焦點弦長可知 ,將問題轉化為根與系數的關系,求出直線方程.

試題解析:(1)根據已知設拋物線的方程為.

∵圓的方程為,

∴圓心的坐標為,半徑.

,解得.

∴拋物線的方程為.

(2)∵的等差中項,∴.

.

垂直于軸,則的方程為,代入,得.

此時,即直線不滿足題意.

不垂直于軸,設的斜率為,由已知得, 的方程為.

,由.

.

∵拋物線的準線為,

,

,解得.

時, 化為

,∴有兩個不相等實數根.

滿足題意,即直線滿足題意.

∴存在滿足要求的直線,它的方程為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,過左焦點F且垂直于x軸的直線與橢圓相交,所得弦長為1,斜率為 ()的直線過點,且與橢圓相交于不同的兩點. 

(Ⅰ)求橢圓的方程;

(Ⅱ)在軸上是否存在點,使得無論取何值, 為定值?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某服裝廠生產一種服裝,每件服裝的成本為40元,出廠單價為60元,該廠為鼓勵銷售商訂購,決定當一次訂購量超過100件時,每多訂購一件,訂購的全部服裝的出廠單價就降低0.02元,根據市場調查,銷售商一次訂購量不會超過500件.
(1)設一次訂購量為x件,服裝的實際出廠單價為P元,寫出函數P=f(x)的表達式;
(2)當銷售商一次訂購多少件服裝時,該服裝廠獲得的利潤最大?并求出最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某消費品專賣店的經營資料顯示如下:
①這種消費品的進價為每件14元;
②該店月銷售量Q(百件)與銷售價格P(元)滿足的函數關系式為Q= ,點(14,22),(20,10),(26,1)在函數的圖象上;
③每月需各種開支4400元.

(1)求月銷量Q(百件)與銷售價格P(元)的函數關系;
(2)當商品的價格為每件多少元時,月利潤最大?并求出最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義在R上的奇函數f(x),當x>0時,f(x)=﹣x2+2x
(1)求函數f(x)在R上的解析式;
(2)若函數f(x)在區間[﹣1,a﹣2]上單調遞增,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點.
(1)證明CD⊥AE;
(2)證明PD⊥平面ABE;
(3)求二面角A﹣PD﹣C的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】橢圓 的離心率為,過右焦點垂直于軸的直線與橢圓交于, 兩點且,又過左焦點任作直線交橢圓于點

(Ⅰ)求橢圓的方程;

(Ⅱ)橢圓上兩點, 關于直線對稱,求面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列函數中與函數y=x相等的函數是(
A.y=log22x
B.y=
C.y=2
D.y=( 2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知A={x| <3x<9},B={x|log2x>0}.
(1)求A∩B和A∪B;
(2)定義A﹣B={x|x∈A且xB},求A﹣B和B﹣A.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视