精英家教網 > 高中數學 > 題目詳情

【題目】某校高二年級學生會有理科生4名,其中3名男同學;文科生3名,其中有1名男同學.從這7名成員中隨機抽4人參加高中示范校驗收活動問卷調查.

(Ⅰ)設為事件“選出的4人中既有文科生又有理科生”,求事件的概率;

(Ⅱ)設為選出的4人中男生人數與女生人數差的絕對值,求隨機變量的分布列和數學期望.

【答案】(1)(2)

【解析】

試題(Ⅰ)根據古典概型結合排列組合知識求出所選四人全部是理科的概率,再根據對立事件的概率公式求解;(Ⅱ)隨機變量的所有可能值為 ,利用古典概型概率公式,分別求出對應概率,進而得分布列,根據期望公式可得結果.

試題解析:(Ⅰ),故事件發生的概率為.

(Ⅱ)隨機變量的所有可能值為0,2,4.

所以隨機變量的分布列為

0

2

4

隨機變量的數學期望

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某單位擬建一個扇環面形狀的花壇(如圖所示),該扇環面是由以點為圓心的兩個同心圓弧和延長后通過點的兩條直線段圍成.按設計要求扇環面的周長為30米,其中大圓弧所在圓的半徑為10.設小圓弧所在圓的半徑為米,圓心角為(弧度).

1)求關于的函數關系式;

2)已知在花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4/米,弧線部分的裝飾費用為9/米.設花壇的面積與裝飾總費用的比為,求關于的函數關系式,并求出為何值時, 取得最大值?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《周脾算經》有記載:一年有二十四個節氣,每個節氣晷(gui)長損益相同,晷是按照日影測定時刻的儀器,晷長即所測定的影子的長度,二十四節氣及晷長變化如圖所示,相鄰兩個節氣晷長變化量相同,周而復始,若冬至晷長最長是一丈三尺五寸,夏至晷長最短是一尺五寸,(一丈等于10尺,一尺等于10寸),則秋分節氣的晷長是(

A.七尺五寸B.二尺五寸C.五尺五寸D.四尺五寸

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知三棱柱的底面是正三角形,側面為菱形,且,平面平面,、分別是的中點.

1)求證:平面;

2)求證:;

3)求與平面所成角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓,圓,直線l過點

若直線l被圓所截得的弦長為,求直線l的方程;

若圓P是以為直徑的圓,求圓P與圓的公共弦所在直線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

的單調區間和極值;

時,若,且,證明:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓軸相切于點(0,3),圓心在經過點(2,1)與點(﹣2,﹣3)的直線上.

(1)求圓的方程;

(2)圓與圓相交于M、N兩點,求兩圓的公共弦MN的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知

)當時,判斷在定義域上的單調性;

)若上的最小值為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(1)已知函數,函數的導函數為.

①求函數的定義域;

②求函數的零點個數.

(2)給出如下定義:如果是曲線和曲線的公共點,并且曲線在點處的切線與曲線在點處的切線重合,則稱曲線與曲線在點處相切,點叫曲線和曲線的一個切點.試判斷曲線與曲線是否在某點處相切?若是,求出所有切點的坐標;若不是,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视