【題目】2019年春節期間,我國高速公路繼續執行“節假日高速免費政策”.某路橋公司為掌握春節期間車輛出行的高峰情況,在某高速收費點處記錄了大年初三上午9:20~10:40這一時間段內通過的車輛數,統計發現這一時間段內共有600輛車通過該收費點,它們通過該收費點的時刻的頻率分布直方圖如圖所示,其中時間段9:20~9:40記作區間,9:40~10:00記作
,10:00~10:20記作
,10:20~10:40記作
.比方:10點04分,記作時刻64.
(1)估計這600輛車在9:20~10:40時間段內通過該收費點的時刻的平均值(同一組中的數據用該組區間的中點值代表);
(2)為了對數據進行分析,現采用分層抽樣的方法從這600輛車中抽取10輛,再從這10輛車中隨機抽取4輛,記為9:20~10:00之間通過的車輛數,求
的分布列與數學期望;
(3)由大數據分析可知,車輛在春節期間每天通過該收費點的時刻服從正態分布
,其中
可用這600輛車在9:20~10:40之間通過該收費點的時刻的平均值近似代替,
可用樣本的方差近似代替(同一組中的數據用該組區間的中點值代表),已知大年初五全天共有1000輛車通過該收費點,估計在9:46~10:40之間通過的車輛數(結果保留到整數).
參考數據:若,則
,
,
.
【答案】(1)10點04分;(2)詳見解析;(3)819輛.
【解析】
(1)用每組中點值乘以頻率,然后相加,得到平均值.(2)先用分層抽樣的知識計算出量車中位于
的車輛數,然后利用超幾何分布的知識計算出分布列,并求得數學期望.(3)由(1)可知
,計算出方差
和標準差
,利用正態分布的對稱性,計算出在9:46~10:40這一時間段內通過的車輛的概率,乘以
得到所求車輛數.
解:(1)這600輛車在9:20~10:40時間段內通過該收費點的時刻的平均值為,即10點04分。
(2)結合頻率分布直方圖和分層抽樣的方法可知:抽取的10輛車中,在10:00前通過的車輛數就是位于時間分組中在這一區間內的車輛數,即
,所以
的可能取值為0,1,2,3,4。
所以,
,
,
,
,
所以的分布列為
0 | 1 | 2 | 3 | 4 | |
所以.
(3)由(1)可得,
,
所以.
估計在9:46~10:40這一時間段內通過的車輛數,也就是通過的車輛數,
由,得
,
所以,估計在9:46~10:40這一時間段內通過的車輛數為(輛).
科目:高中數學 來源: 題型:
【題目】為培養學生的閱讀習慣,某校開展了為期一年的“弘揚傳統文化,閱讀經典名著”活動. 活動后,為了解閱讀情況,學校統計了甲、乙兩組各10名學生的閱讀量(單位:本),統計結果用莖葉圖記錄如下,乙組記錄中有一個數據模糊,無法確認,在圖中以a表示.
(Ⅰ)若甲組閱讀量的平均值大于乙組閱讀量的平均值,求圖中a的所有可能取值;
(Ⅱ)將甲、乙兩組中閱讀量超過15本的學生稱為“閱讀達人”. 設,現從所有的“閱讀達人”里任取2人,求至少有1人來自甲組的概率;
(Ⅲ)記甲組閱讀量的方差為. 若在甲組中增加一個閱讀量為10的學生,并記新得到的甲組閱讀量的方差為
,試比較
,
的大小.(結論不要求證明)
(注:,其中
為數據
的平均數)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知是橢圓
與拋物線
的一個公共點,且橢圓與拋物線具有一個相同的焦點
.
(1)求橢圓及拋物線
的方程;
(2)設過且互相垂直的兩動直線
,
與橢圓
交于
兩點,
與拋物線
交于
兩點,求四邊形
面積的最小值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線段AC的中點,E為線段PC上一點.
(1)求證:PA⊥BD;
(2)求證:平面BDE⊥平面PAC;
(3)當PA∥平面BDE時,求三棱錐E-BCD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著互聯網技術的快速發展,人們更加關注如何高效地獲取有價值的信息,網絡知識付費近兩年呈現出爆發式的增長,為了了解網民對網絡知識付費的態度,某網站隨機抽查了歲及以上不足
歲的網民共
人,調查結果如下:
(1)請完成上面的列聯表,并判斷在犯錯誤的概率不超過
的前提下,能否認為網民對網絡知識付費的態度與年齡有關?
(2)在上述樣本中用分層抽樣的方法,從支持和反對網絡知識付費的兩組網民中抽取名,若在上述
名網民中隨機選
人,求至少1人支持網絡知識付費的概率.
附:,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點E為棱PC的中點.
(1)證明:BE⊥DC;
(2)求直線BE與平面PBD所成角的正弦值;
(3)若F為棱PC上一點,滿足BF⊥AC,求二面角F-AB-P的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com