【題目】在△ABC中,內角A,B,C所對的邊分別為a,b,c,已知b+c=2acosB. (Ⅰ)證明:A=2B
(Ⅱ)若△ABC的面積S= ,求角A的大。
【答案】(Ⅰ)證明:∵b+c=2acosB, ∴sinB+sinC=2sinAcosB,
∴sinB+sin(A+B)=2sinAcosB
∴sinB+sinAcosB+cosAsinB=2sinAcosB
∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B)
∵A,B是三角形中的角,
∴B=A﹣B,
∴A=2B;
(Ⅱ)解:∵△ABC的面積S= ,
∴ bcsinA=
,
∴2bcsinA=a2 ,
∴2sinBsinC=sinA=sin2B,
∴sinC=cosB,
∴B+C=90°,或C=B+90°,
∴A=90°或A=45°
【解析】(Ⅰ)利用正弦定理,結合和角的正弦公式,即可證明A=2B(Ⅱ)若△ABC的面積S= ,則
bcsinA=
,結合正弦定理、二倍角公式,即可求角A的大。
科目:高中數學 來源: 題型:
【題目】觀察下列等式: (sin )﹣2+(sin
)﹣2=
×1×2;
(sin )﹣2+(sin
)﹣2+(sin
)﹣2+sin(
)﹣2=
×2×3;
(sin )﹣2+(sin
)﹣2+(sin
)﹣2+…+sin(
)﹣2=
×3×4;
(sin )﹣2+(sin
)﹣2+(sin
)﹣2+…+sin(
)﹣2=
×4×5;
…
照此規律,
(sin )﹣2+(sin
)﹣2+(sin
)﹣2+…+(sin
)﹣2= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在等比數列{an}中,a1=2,a3 , a2+a4 , a5成等差數列.
(1)求數列{an}的通項公式
(2)若數列{bn}滿足b1+ +…+
=an(n∈N*),{bn}的前n項和為Sn , 求使Sn﹣nan+6≥0成立的正整數n的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn , 且Sn= nan+1 , 其中a1=1
(1)求數列{an}的通項公式;
(2)若bn= +
,數列{bn}的前n項和為Tn , 求證:Tn<2n+
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知{an}是公差為3的等差數列,數列{bn}滿足b1=1,b2= ,anbn+1+bn+1=nbn . (Ⅰ)求{an}的通項公式;
(Ⅱ)求{bn}的前n項和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種放射性元素的原子數N隨時間t的變化規律是N=N0e﹣λt , 其中e=2.71828…為自然對數的底數,N0 , λ是正的常數
(Ⅰ)當N0=e3 , λ= , t=4時,求lnN的值
(Ⅱ)把t表示原子數N的函數;并求當N= , λ=
時,t的值(結果保留整數)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數f(x)=3sin(2x﹣ )的圖象為C,則下列結論中正確的序號是 . ①圖象C關于直線x=
對稱;
②圖象C關于點( ,0)對稱;
③函數f(x)在區間(﹣ ,
)內不是單調的函數;
④由y=3sin2x的圖象向右平移 個單位長度可以得到圖象C.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】綜合題。
(1)已知圓C的圓心是x﹣y+1=0與x軸的交點,且與直線x+y+3=0相切,求圓C的標準方程;
(2)若點P(x,y)在圓x2+y2﹣4y+3=0上,求 的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com