若二次函數f(x)=ax2+bx+c(a≠0)滿足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若在區間[-1,1]上,不等式f(x)>2x+m恒成立,求實數m的取值范圍.
(1) f(x)=x2-x+1.(2) (-∞,-1).
解析試題分析:(1)由f(0)=1得,c=1. 1分
∴f(x)=ax2+bx+1.又f(x+1)-f(x)=2x,
∴a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x,
即2ax+a+b=2x,∴∴
5分
因此,f(x)=x2-x+1.
(2)f(x)>2x+m等價于x2-x+1>2x+m, 6分
即x2-3x+1-m>0,要使此不等式在[-1,1]上恒成立,
只需使函數g(x)=x2-3x+1-m在[-1,1]上的最小值大于0即可. 8分
∵g(x)=x2-3x+1-m在[-1,1]上單調遞減,
∴g(x)min=g(1)=-m-1, 10分
由-m-1>0得,m<-1.
因此滿足條件的實數m的取值范圍是(-∞,-1). 12分
考點:本題考查了一元二次函數及其恒成立問題
點評:對于二次函數f(x)=ax2+bx+c=0(a≠0)在實數集R上恒成立問題可利用判別式直接求解,即:f(x)>0恒成立;f(x)<0恒成立
,若是二次函數在指定區間上的恒成立問題,還可以利用韋達定理以及根與系數的分布知識求解
科目:高中數學 來源: 題型:解答題
已知正項數列中,
,點
在拋物線
上;數列
中,點
在過點(0, 1),以
為斜率的直線上。
(1)求數列的通項公式;
(2)若 , 問是否存在
,使
成立,若存在,求出
值;若不存在,說明理由;
(3)對任意正整數,不等式
恒成立,求正數
的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
據行業協會預測:某公司以每噸10萬元的價格銷售某種化工產品,可售出該產品1000 噸,若將該產品每噸的價格上漲%,則銷售量將減少
%,且該化工產品每噸的價格上漲幅度不超過
%,
其中
為正常數
(1)當時,該產品每噸的價格上漲百分之幾,可使銷售的總金額最大?
(2)如果漲價能使銷售總金額比原銷售總金額多,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某造船公司年造船量是20艘,已知造船x艘的產值函數為R(x)=3700x+45x2-10x3(單位:萬元),成本函數為C(x)=460x+5000(單位:萬元),又在經濟學中,函數f(x)的邊際函數Mf(x)定義為Mf(x)=f(x+1)-f(x).
(1)求利潤函數P(x)及邊際利潤函數MP(x);(提示:利潤=產值-成本)
(2)問年造船量安排多少艘時,可使公司造船的年利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某海邊旅游景點有50輛自行車供游客租賃使用,管理這些自行車的費用是每日115元。根據經驗,若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超出6元,則每超過1元,租不出的自行車就增加3輛。為了便于結算,每輛自行車的日租金(元)只取整數,并且要求出租自行車一日的總收入必須高于這一日的管理費用,用
(元)表示出租自行車的日凈收入(即一日中出租自行車的總收入減去管理費用后的所得).
(Ⅰ)求函數的解析式及其定義域;
(Ⅱ)試問當每輛自行車的日租金定為多少元時,才能使一日的凈收入最多?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com