【題目】近年,國家逐步推行全新的高考制度.新高考不再分文理科,某省采用模式,其中語文、數學、外語三科為必考科目,每門科目滿分均為
分.另外考生還要依據想考取的高校及專業的要求,結合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學、生物
門科目中自選
門參加考試(
選
),每門科目滿分均為
分.為了應對新高考,某高中從高一年級
名學生(其中男生
人,女生
人)中,采用分層抽樣的方法從中抽取
名學生進行調查,其中,女生抽取
人.
(1)求的值;
(2)學校計劃在高一上學期開設選修中的“物理”和“地理”兩個科目,為了了解學生對這兩個科目的選課情況,對抽取到的名學生進行問卷調查(假定每名學生在“物理”和“地理”這兩個科目中必須選擇一個科目且只能選擇一個科目),下表是根據調查結果得到的一個不完整的
列聯表,請將下面的
列聯表補充完整,并判斷是否有
的把握認為選擇科目與性別有關?說明你的理由;
選擇“物理” | 選擇“地理” | 總計 | |
男生 | |||
女生 | |||
總計 |
(3)在抽取到的名女生中,按(2)中的選課情況進行分層抽樣,從中抽出
名女生,再從這
名女生中抽取
人,設這
人中選擇“物理”的人數為
,求
的分布列及期望.附:
,
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
【答案】(1);(2)聯表見解析,有,理由見解析;(3)分布列見解析,
【解析】
(1)根據分層抽樣的特征,以及題意,得到,求解,即可得出結果;
(2)根據題中數據,可直接完善列聯表,根據公式求出,結合臨界值表,即可得出結果;
(3)從名女生中分層抽樣抽
名女生,所以這
女生中有
人選擇“物理”,
人選擇“地理”.
名女生中再選擇
名女生,則這
名女生中選擇“物理”的人數
可為
,
,
,
,
,分別求出其對應的概率,即可得到分布列,求出期望.
(1)由題意得,
解得.
(2)2×2列聯表為:
選擇“物理” | 選擇“地理” | 總計 | |
男生 | 45 | 10 | 55 |
女生 | 25 | 20 | 45 |
總計 | 70 | 30 | 100 |
,
故有的把握認為選擇科目與性別有關.
(3)從名女生中分層抽樣抽
名女生,所以這
女生中有
人選擇“物理”,
人選擇“地理”.
名女生中再選擇
名女生,則這
名女生中選擇“物理”的人數
可為
,
,
,
,
,
設事件發生的概率為
,則
,
,
,
,
所以
的分布列為:
X | 0 | 1 | 2 | 3 | 4 |
P |
期望.
科目:高中數學 來源: 題型:
【題目】已知函數的最小正周期為4
,其圖象關于直線
對稱,給出下面四個結論:
①函數在區間
上先增后減;②將函數
的圖象向右平移
個單位后得到的圖象關于原點對稱;③點
是函數
圖象的一個對稱中心;④函數
在
上的最大值為1.其中正確的是( )
A. ①② B. ③④ C. ①③ D. ②④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從拋物線C:(
)外一點作該拋物線的兩條切線PA、PB(切點分別為A、B),分別與x軸相交于C、D,若AB與y軸相交于點Q,點
在拋物線C上,且
(F為拋物線的焦點).
(1)求拋物線C的方程;
(2)①求證:四邊形是平行四邊形.
②四邊形能否為矩形?若能,求出點Q的坐標;若不能,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
的參數方程為
(
為參數)。在極坐標系(與直角坐標系
取相同的長度單位,且以原點
為極點,以
軸正半軸為極軸)中,圓
的極坐標方程為
。
(1)求直線的普通方程和圓
的直角坐標方程;
(2)設圓與直線
交于
,
兩點,若點
的坐標為
,求
。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點為
,
是橢圓
上一點,
軸,
.
(1)求橢圓的標準方程;
(2)若直線與橢圓
交于
、
兩點,線段
的中點為
,
為坐標原點,且
,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列說法:①設,
,則“
”是“
”的充分不必要條件;②若
,則
,使得
;③
為等比數列,則“
”是“
”的充分不必要條件;④命題“
,
,使得
”的否定形式是“
,
,使得
” .其中正確說法的個數為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f1(x)=x2,f2(x)=alnx(其中a>0).
(1)求函數f(x)=f1(x)·f2(x)的極值;
(2)若函數g(x)=f1(x)-f2(x)+(a-1)x在區間(,e)內有兩個零點,求正實數a的取值范圍;
(3)求證:當x>0時,.(說明:e是自然對數的底數,e=2.71828…)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com