【題目】設數列{an}的前n項和為Sn,已知ban-2n=(b-1)Sn.
(1)證明:當b=2時,{an-n·2n-1}是等比數列;
(2)求{an}的通項公式.
【答案】(1)見解析(2)當b=2時,an=(n+1)·2n-1;當b≠2時,an=
【解析】
由題意知a1=2,且ban-2n=(b-1)Sn,ban+1-2n+1=(b-1)Sn+1,
兩式相減得b(an+1-an)-2n=(b-1)an+1,
即an+1=ban+2n.①
(1)證明 當b=2時,由①知an+1=2an+2n,
于是an+1-(n+1)·2n=2an+2n-(n+1)·2n=2(an-n·2n-1),
又a1-1·21-1=1≠0,所以{an-n·2n-1}是首項為1,公比為2的等比數列.
(2)當b=2時,由(1)知an-n·2n-1=2n-1,即an=(n+1)·2n-1;當b≠2時,由①得,an+1-·2n+1=ban+2n-
·2n+1=ban-
·2n=b
,因此an+1-
·2n+1=b
=
·bn,
得an=
綜上: 當b=2時,an=(n+1)·2n-1;當b≠2時,an=
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線
的參數方程為
(
為參數),曲線
的參數方程為
(
為參數),以該直角坐標系的原點
為極點,
軸的非負半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(Ⅰ)分別求曲線的極坐標方程和曲線
的直角坐標方程;
(Ⅱ)設直線交曲線
于
,
兩點,交曲線
于
,
兩點,求
的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】極坐標與參數方程
在直角坐標系,直線
的參數方程是
(
為參數).在以
為極點,
軸正半軸為極軸建立極坐標系中,曲線
:
.
(1)當,
時,判斷直線
與曲線
的位置關系;
(2)當時,若直線與曲
線
相交于
,
兩點,設
,且
,求直線
的傾斜角.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某同學用“五點法”畫函數在某一個周期內的圖象時,列表并填入了部分數據,如下表:
0 | |||||
0 | 5 | 0 |
(1)請將上表數據補充完整,填寫在答題卡上相應位置,并直接寫出函數的解析式;
(2)將圖象上所有點向左平行移動
個單位長度,并把圖象上所有點的橫坐標縮短為原來的
(縱坐標不變),得到
的圖象.若
圖象的一個對稱中心為
,求
的最小值;
(3)在(2)條件下,求在
上的增區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學高三年級有學生500人,其中男生300人,女生200人。為了研究學生的數學成績是否與性別有關,采用分層抽樣的方法,從中抽取了100名學生,統計了他們期中考試的數學分數,然后按照性別分為男、女兩組,再將兩組的分數分成5組: 分別加以統計,得到如圖所示的頻率分布直方圖。
(I)從樣本分數小于110分的學生中隨機抽取2人,求兩人恰為一男一女的概率;
(II)若規定分數不小于130分的學生為“數學尖子生”,請你根據已知條件完成2×2列聯表,并判斷是否有90%的把握認為“數學尖子生與性別有關”?
附表:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com