【題目】已知等差數列的前三項分別為λ,6,3λ,前n項和為Sn,且Sk=165.
(1)求λ及k的值;
(2)設bn=,且數列
的前n項和Tn,證明:
≤Tn<1.
科目:高中數學 來源: 題型:
【題目】設橢圓方程+
=1(a>b>0),橢圓上一點到兩焦點的距離和為4,過焦點且垂直于x軸的直線交橢圓于A,B兩點,AB=2.
(1)求橢圓方程;
(2)若M,N是橢圓C上的點,且直線OM與ON的斜率之積為﹣,是否存在動點P(x0,y0),若
=
+2
,有x02+2y02為定值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】等比數列{an}的公比為q,其前n項的積為Tn,并且滿足條件a1>1,a49a50-1>0,(a49-1)(a50-1)<0.給出下列結論:
①0<q<1;②a1a99-1<0;③T49的值是Tn中最大的;④使Tn>1成立的最大自然數n等于98.
其中所有正確結論的序號是____________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設為坐標原點,已知橢圓
的離心率為
,拋物線
的準線方程為
.
(1)求橢圓和拋物線
的方程;
(2)設過定點的直線
與橢圓
交于不同的兩點
,若
在以
為直徑的圓的外部,求直線
的斜率
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了對某課題進行研究,用分層抽樣方法從三所高校的相關人員中,抽取若干人組成研究小組,有關數據見下表(單位:人)
高校 | 相關人數 | 抽取人數 |
A | 18 | |
B | 36 | 2 |
C | 54 |
(Ⅰ)求,
;
(Ⅱ)若從高校抽取的人中選2人作專題發言,求這二人都來自高校
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義:數列對一切正整數
均滿足
,稱數列
為“凸數列”,以下關于“凸數列”的說法:
①等差數列一定是凸數列;
②首項,公比
且
的等比數列
一定是凸數列;
③若數列為凸數列,則數列
是單調遞增數列;
④若數列為凸數列,則下標成等差數列的項構成的子數列也為凸數列.
其中正確說法的序號是_____________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com