精英家教網 > 高中數學 > 題目詳情

【題目】中,角的對邊分別為,且,若的面積為,則的最小值為( )

A.B.C.D.3

【答案】B

【解析】

試題由正弦定理,有,又2c·cosB2ab,得

2sinC·cosB2sin AsinB

ABCπ,得sin Asin(BC),

2sinC·cosB2sin(BC)sinB,即2sinB·cosCsinB0

0Bπ,sinB0,得cosC=-,

因為0Cπ,得C,

△ABC的面積為Sab sinCab,即c3ab,

由余弦定理,得c2a2b22ab cosC,化簡,得a2b2ab9a2b2,

∵a2b2≥2ab,當僅當a=b時取等號,

∴2abab≤9a2b2,即ab≥,故ab的最小值是

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知點,直線為平面內的動點,過點作直線的垂線,垂足為點,且.

(1)求動點的軌跡的方程;

(2)過點作兩條互相垂直的直線分別交軌跡四點.求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知頂點為原點的拋物線C的焦點與橢圓的上焦點重合,且過點.

1)求橢圓的標準方程;

(2)若拋物線上不同兩點A,B作拋物線的切線,兩切線的斜率,若記AB的中點的橫坐標為m,AB的弦長,并求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線與直線lykx1無交點,設點P為直線l上的動點,過P作拋物線C的兩條切線,A,B為切點.

1)證明:直線AB恒過定點Q;

2)試求PAB面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設min{m,n}表示m,n二者中較小的一個,已知函數f(x)=x2+8x+14,g(x)=(x>0),若x1∈[-5,a](a≥-4),x2∈(0,+∞),使得f(x1)=g(x2)成立,則a的最大值為

A.-4B.-3C.-2D.0

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某家庭記錄了未使用節水龍頭50天的日用水量數據(單位:m3)和使用了節水龍頭50天的日用水量數據,得到頻數分布表如下:

未使用節水龍頭50天的日用水量頻數分布表

日用

水量

頻數

1

3

2

4

9

26

5

使用了節水龍頭50天的日用水量頻數分布表

日用

水量

頻數

1

5

13

10

16

5

(1)在答題卡上作出使用了節水龍頭50天的日用水量數據的頻率分布直方圖:

2)估計該家庭使用節水龍頭后,日用水量小于0.35 m3的概率;

3)估計該家庭使用節水龍頭后,一年能節省多少水?(一年按365天計算,同一組中的數據以這組數據所在區間中點的值作代表.)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知圓過以下4個不同的點:.

1)求圓的標準方程;

2)先將圓向左平移個單位后,再將所有點的橫坐標、縱坐標都伸長到原來的倍得到圓,若兩個點分別在直線上,為圓上任意一點,且為常數),證明直線過圓的圓心,并求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,曲線C的參數方程為為參數),直線l的參數方程為t為參數),在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,射線m

1)求Cl的極坐標方程;

2)設mCl分別交于異于原點的A,B兩點,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數方程為(其中為參數,且,在以為極點、軸的非負半軸為極軸的極坐標系(兩種坐標系取相同的單位長度)中,曲線的極坐標方程為,設直線經過定點,且與曲線交于、兩點.

(Ⅰ)求點的直角坐標及曲線的直角坐標方程;

(Ⅱ)求證:不論為何值時,為定值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视