【題目】已知函數f(x)=xlnx+2x﹣1.
(1)求f(x)的極值;
(2)若對任意的x>1,都有f(x)﹣k(x﹣1)>0(k∈Z)恒成立,求k的最大值.
【答案】(1)極小值為﹣e﹣3﹣1,無極大值;(2)最大值為4.
【解析】
(1)求導判斷函數的單調性,由極值定義得解;(2)問題轉化為在
上恒成立,構造函數
,利用導數求函數
的范圍,進而得到實數
的范圍,由此得到答案.
(1)函數f(x)的定義域為(0,+∞),f′(x)=lnx+3,
令f′(x)=0,解得x=e﹣3,
當x∈(0,e﹣3)時,f′(x)<0,函數f(x)遞減;
當x∈(e﹣3,+∞)時,f′(x)>0,函數f(x)遞增;
故f(x)的極小值為f(e﹣3)=﹣e﹣3﹣1,無極大值;
(2)原式可化為,
令,則
,
令h(x)=x﹣2﹣lnx(x>1),則,
故h(x)在(1,+∞)上遞增,
故存在唯一的x0∈(3,4),使得h(x0)=0,即lnx0=x0﹣2,
且當x∈(1,x0)時,h(x)<0,g′(x)<0,g(x)遞減;
當x∈(x0,+∞)時,h(x)>0,g′(x)>0,g(x)遞增;
故g(x)min=g(x0)=x0+1,
故k<x0+1∈(4,5),所以實數k的最大值為4.
科目:高中數學 來源: 題型:
【題目】過正四面體ABCD的頂點A作一個形狀為等腰三角形的截面,且使截面與底面BCD所成的角為,這樣的截面有( )
A.6個B.12個C.16個D.18個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】國家正積極推行垃圾分類工作,教育部辦公廳等六部門也發布了《關于在學校推進生活垃圾分類管理工作的通知》.《通知》指出,到2020年底,各學校生活垃圾分類知識普及率要達到100%某市教育主管部門據此做了“哪些活動最能促進學生進行垃圾分類”的問卷調查(每個受訪者只能在問卷的4個活動中選擇一個)如圖是調查結果的統計圖,以下結論正確的是( 。
A.回答該問卷的受訪者中,選擇的(2)和(3)人數總和比選擇(4)的人數多
B.回該問卷的受訪者中,選擇“校園外宣傳”的人數不是最少的
C.回答該問卷的受訪者中,選擇(4)的人數比選擇(2)的人數可能多30人
D.回答該問卷的總人數不可能是1000人
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下圖是某校某班44名同學的某次考試的物理成績y和數學成績x的散點圖:
根據散點圖可以看出y與x之間有線性相關關系,但圖中有兩個異常點A,B.經調查得知,A考生由于重感冒導致物理考試發揮失常,B生因故未能參加物理考試.為了使分析結果更科學準確,剔除這兩組數據后,對剩下的數據作處理,得到一些統計量的值:
,
,
,
,
,其中
,
分別表示這42名同學的數學成績、物理成績,
.y與x的相關系數
.
(1)若不剔除A、B兩名考生的數據,用44數據作回歸分析,設此時y與x的相關系數為,試判斷
與r的大小關系,并說明理由;
(2)求y關于x的線性回歸方程(系數精確到),并估計如果B考生參加了這次物理考試(已知B考生的數學成績為125分),物理成績是多少?(精確到個位).
附:回歸方程中,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
已知函數(
是自然對數的底數).
(1)若曲線在
處的切線也是拋物線
的切線,求
的值;
(2)若對于任意恒成立,試確定實數
的取值范圍;
(3)當時,是否存在
,使曲線
在點
處的切線斜率與
在
上的最小值相等?若存在,求符合條件的
的個數;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數給出下列四個結論:①對
,
,使得
無解;②對
,
,使得
有兩解;③當
時,
,使得
有解;④當
時,
,使得
有三解.其中,所有正確結論的序號是______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com