【題目】某創業投資公司擬投資開發某種新能源產品,估計能獲得10萬元到1 000萬元的投資收益.現準備制定一個對科研課題組的獎勵方案:獎金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎金不超過9萬元,同時獎金不超過投資收益的20%.
(1)請分析函數y= +1是否符合公司要求的獎勵函數模型,并說明原因;
(2)若該公司采用函數模型y= 作為獎勵函數模型,試確定最小的正整數a的值.
【答案】
(1)解:對于函數模型y=f(x)= +1,
當x∈[10,1 000]時,f(x)為增函數,
f(x)max=f(1 000)= +1=
+1<9,所以f(x)≤9恒成立,
又因為當x∈[10,1 000]時f(x)﹣ =﹣
+1≤f(10)=﹣
<0,
所以f(x)≤ 恒成立,
故函數模型y= -3+1符合公司要求
(2)解:對于函數模型y=g(x)= ,即g(x)=10﹣
,
當3a+20>0,即a>﹣ 時遞增,
為使g(x)≤9對于x∈[10,1 000]恒成立,
即要g(1 000)≤9,3a+18≥1 000,即a≥ ,
為使g(x)≤ 對于x∈[10,1 000]恒成立,
即要 ≤5,即x2﹣48x+15a≥0恒成立,
即(x﹣24)2+15a﹣576≥0(x∈[10,1 000])恒成立,又24∈[10,1 000],
故只需15a﹣576≥0即可,
所以a≥ .
綜上,a≥ ,故最小的正整數a的值為328
【解析】(1)設獎勵函數模型為y=f(x),根據“獎金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,說明在定義域上是增函數,且獎金不超過9萬元,即f(x)≤9,同時獎金不超過投資收益的20%.即f(x)≤ .(2)先將函數解析式進行化簡,然后根據函數的單調性,以及使g(x)≤9對x∈[10,1000]恒成立以及使g(x)≤
對x∈[10,1000]恒成立,建立不等式,求出相應的a的取值范圍.
科目:高中數學 來源: 題型:
【題目】孝感星河天街購物廣場某營銷部門隨機抽查了100名市民在2017年國慶長假期間購物廣場的消費金額,所得數據如表,已知消費金額不超過3千元與超過3千元的人數比恰為3:2.
(1)試確定,
,
,
的值,并補全頻率分布直方圖(如圖);
(2)用分層抽樣的方法從消費金額在和
的兩個群體中抽取5人進行問卷調查,則各小組應抽取幾人?若從這5人中隨機選取2人,則此2人來自同一群體的概率是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓:
的離心率與雙曲線
的離心率互為倒數,且橢圓的長軸長為4.
(1)求橢圓的標準方程;
(2)若直線交橢圓
于
,
兩點,
(
)為橢圓
上一點,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】孝感車天地關于某品牌汽車的使用年限(年)和所支出的維修費用
(千元)由如表的統計資料:
2 | 3 | 4 | 5 | 6 | |
2.1 | 3.4 | 5.9 | 6.6 | 7.0 |
(1)畫出散點圖并判斷使用年限與所支出的維修費用是否線性相關;如果線性相關,求回歸直線方程;
(2)若使用超過8年,維修費用超過1.5萬元時,車主將處理掉該車,估計第10年年底時,車主是否會處理掉該車?
()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是定義在R上的偶函數,當x≥0時,f(x)=x2﹣2x﹣1.
(1)求f(x)的函數解析式;
(2)作出函數f(x)的簡圖,寫出函數f(x)的單調減區間及最值.
(3)若關于x的方程f(x)=m有兩個解,試說出實數m的取值范圍.(只要寫出結果,不用給出證明過程)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市為了鼓勵市民節約用電,實行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過200度的部分按0.5元/度收費,超過200度但不超過400度的部分按0.8元/度收費,超過400度的部分按1.0元/度收費.
(1)求某戶居民用電費用(單位:元)關于月用電量
(單位:度)的函數解析式;
(2)為了了解居民的用電情況,通過抽樣,獲得了今年1月份100戶居民每戶的用電量,統計分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年1月份用電費用不超過260元的點80%,求的值;
(3)在滿足(2)的條件下,估計1月份該市居民用戶平均用電費用(同一組中的數據用該組區間的中點值作代表).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的通項為an , 前n項和為sn , 且an是sn與2的等差中項,數列{bn}中,b1=1,點P(bn , bn+1)在直線x﹣y+2=0上. (Ⅰ)求數列{an}、{bn}的通項公式an , bn
(Ⅱ)設{bn}的前n項和為Bn , 試比較 與2的大。
(Ⅲ)設Tn= ,若對一切正整數n,Tn<c(c∈Z)恒成立,求c的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com