【題目】孝感星河天街購物廣場某營銷部門隨機抽查了100名市民在2017年國慶長假期間購物廣場的消費金額,所得數據如表,已知消費金額不超過3千元與超過3千元的人數比恰為3:2.
(1)試確定,
,
,
的值,并補全頻率分布直方圖(如圖);
(2)用分層抽樣的方法從消費金額在和
的兩個群體中抽取5人進行問卷調查,則各小組應抽取幾人?若從這5人中隨機選取2人,則此2人來自同一群體的概率是多少?
【答案】(1)見解析(2)2,3;
【解析】試題分析:(1)根據人數總和為100,以及比例關系列方程組解出,
,再根據頻率等于頻數除以總數,得
,
的值,最后根據縱坐標等于對應概率除以組距描點補全直方圖(2)先根據分層抽樣得各小組人數,再利用枚舉法得總事件數,從中抽出來自同一群體事件數,最后根據古典概型概率公式求概率
試題解析:解:(1)根據題意,有解得
∴,
.
補全頻率分布直方圖如圖所示:
(2)根據題意,消費金額在內的人數為
(人),記為:
,
,
消費金額在內的人數為
(人),記為:1,2,3.
則從這5人中隨機選取2人的選法為: ,
,
,
,
,
,
,
,
,
共10種,
記2人來自同一群體的事件為,則
中含有
,
,
,
共4種,
∴.
科目:高中數學 來源: 題型:
【題目】某市政府為了節約生活用電,計劃在本市試行居民生活用電定額管理,即確定一個居民月用電量標準,用電量不超過
的部分按平價收費,超出
的部分按議價收費.為此,政府調查了100戶居民的月平均用電量(單位:度),以
,
,
,
,
,
,
分組的頻率分布直方圖如圖所示.
(1)求直方圖中的值;
(2)求月平均用電量的眾數和中位數;
(3)如果當地政府希望使左右的居民每月的用電量不超出標準,根據樣本估計總體的思想,你認為月用電量標準
應該定為多少合理?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于定義域為D的函數y=f(x),如果存在區間[m,n]D,同時滿足:
①f(x)在[m,n]內是單調函數;
②當定義域是[m,n]時,f(x)的值域也是[m,n].
則稱[m,n]是該函數的“和諧區間”.
(1)證明:[0,1]是函數y=f(x)=x2的一個“和諧區間”.
(2)求證:函數 不存在“和諧區間”.
(3)已知:函數 (a∈R,a≠0)有“和諧區間”[m,n],當a變化時,求出n﹣m的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(I)討論函數在
上的單調性;
(II)設函數存在兩個極值點,并記作
,若
,求正數
的取值范圍;
(III)求證:當=1時,
(其中e為自然對數的底數)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如下圖,三棱柱ABC-A1B1Cl中,M,N分別為CC1,A1B1的中點.CA⊥CB1,CA=CB1,BA=BC=BB1.
(I)求證:直線MN//平面CAB1;
(II)求證:直線BA1⊥平面CAB1.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數在x=1處的切線與直線
平行。
(Ⅰ)求a的值并討論函數y=f(x)在上的單調性。
(Ⅱ)若函數 (
為常數)有兩個零點
,
(1)求m的取值范圍;
(2)求證: 。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某創業投資公司擬投資開發某種新能源產品,估計能獲得10萬元到1 000萬元的投資收益.現準備制定一個對科研課題組的獎勵方案:獎金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎金不超過9萬元,同時獎金不超過投資收益的20%.
(1)請分析函數y= +1是否符合公司要求的獎勵函數模型,并說明原因;
(2)若該公司采用函數模型y= 作為獎勵函數模型,試確定最小的正整數a的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com