【題目】在平面直角坐標系中,直線
的參數方程是
(
為參數),以
為極點,
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
,且直線
與曲線
交于
兩點.
(Ⅰ)求直線的普通方程及曲線
的直角坐標方程;
(Ⅱ)把直線與
軸的交點記為
,求
的值.
科目:高中數學 來源: 題型:
【題目】如圖(1)五邊形中,
,將
沿
折到
的位置,得到四棱錐
,如圖(2),點
為線段
的中點,且
平面
.
(1)求證:平面平面
;
(2)若直線與所成角的正切值為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】四棱臺被過點的平面截去一部分后得到如圖所示的幾何體,其下底面四邊形
是邊長為2的菱形,
,
平面
,
.
(Ⅰ)求證:平面平面
;
(Ⅱ)若與底面
所成角的正切值為2,求二面角
的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線y=x+b與函數f(x)=ln x的圖象交于兩個不同的點A,B,其橫坐標分別為x1,x2,且x1<x2.
(1)求b的取值范圍;
(2)當x2≥2時,證明x1·<2.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數方程為
(
為參數,
),以原點
為極點,
軸正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線與
的直角坐標方程;
(2)當與
有兩個公共點時,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2018湖北七市(州)教研協作體3月高三聯考】已知橢圓:
的左頂點為
,上頂點為
,直線
與直線
垂直,垂足為
點,且點
是線段
的中點.
(I)求橢圓的方程;
(II)如圖,若直線:
與橢圓
交于
,
兩點,點
在橢圓
上,且四邊形
為平行四邊形,求證:四邊形
的面積
為定值.
【答案】(I);(II)
【解析】試題分析:(1)根據題意可得,
故斜率為
,由直線
與直線
垂直,可得
,因為點
是線段
的中點,∴點
的坐標是
,
代入直線得,連立方程即可得
,
;(2)∵四邊形
為平行四邊形,∴
,設
,
,
,∴
,得
,將
點坐標代入橢圓
方程得
,
點到直線
的距離為
,利用弦長公式得EF,則平行四邊形
的面積為
.
解析:(1)由題意知,橢圓的左頂點
,上頂點
,直線
的斜率
,
得,
因為點是線段
的中點,∴點
的坐標是
,
由點在直線
上,∴
,且
,
解得,
,
∴橢圓的方程為
.
(2)設,
,
,
將代入
消去
并整理得
,
則,
,
,
∵四邊形為平行四邊形,∴
,
得,將
點坐標代入橢圓
方程得
,
點到直線
的距離為
,
,
∴平行四邊形的面積為
.
故平行四邊形的面積
為定值
.
【題型】解答題
【結束】
21
【題目】已知函數,
.
(1)當時,討論函數
的單調性;
(2)當時,求證:函數
有兩個不相等的零點
,
,且
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知是拋物線
上的兩個點,點
的坐標為
,直線
的斜率為
.設拋物線
的焦點在直線
的下方.
(Ⅰ)求k的取值范圍;
(Ⅱ)設C為W上一點,且,過
兩點分別作W的切線,記兩切線的交點為
. 判斷四邊形
是否為梯形,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓與直線
相切.
(1)若直線與圓
交于
兩點,求
;
(2)設圓與
軸的負半軸的交點為
,過點
作兩條斜率分別為
的直線交圓
于
兩點,且
,試證明直線
恒過一定點,并求出該定點的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com