【題目】【2018湖北七市(州)教研協作體3月高三聯考】已知橢圓:
的左頂點為
,上頂點為
,直線
與直線
垂直,垂足為
點,且點
是線段
的中點.
(I)求橢圓的方程;
(II)如圖,若直線:
與橢圓
交于
,
兩點,點
在橢圓
上,且四邊形
為平行四邊形,求證:四邊形
的面積
為定值.
【答案】(I);(II)
【解析】試題分析:(1)根據題意可得,
故斜率為
,由直線
與直線
垂直,可得
,因為點
是線段
的中點,∴點
的坐標是
,
代入直線得,連立方程即可得
,
;(2)∵四邊形
為平行四邊形,∴
,設
,
,
,∴
,得
,將
點坐標代入橢圓
方程得
,
點到直線
的距離為
,利用弦長公式得EF,則平行四邊形
的面積為
.
解析:(1)由題意知,橢圓的左頂點
,上頂點
,直線
的斜率
,
得,
因為點是線段
的中點,∴點
的坐標是
,
由點在直線
上,∴
,且
,
解得,
,
∴橢圓的方程為
.
(2)設,
,
,
將代入
消去
并整理得
,
則,
,
,
∵四邊形為平行四邊形,∴
,
得,將
點坐標代入橢圓
方程得
,
點到直線
的距離為
,
,
∴平行四邊形的面積為
.
故平行四邊形的面積
為定值
.
【題型】解答題
【結束】
21
【題目】已知函數,
.
(1)當時,討論函數
的單調性;
(2)當時,求證:函數
有兩個不相等的零點
,
,且
.
【答案】(1)見解析;(2)見解析
【解析】試題分析:(1)討論函數單調區間即解導數大于零求得增區間,導數小于零求得減區間(2)函數有兩個不同的零點,先分析函數單調性得零點所在的區間, 在
上單調遞增,在
上單調遞減.∵
,
,
,∴函數
有兩個不同的零點,且一個在
內,另一個在
內.
不妨設,
,要證
,即證
,
在
上是增函數,故
,且
,即證
. 由
,得
,
令
,
,得
在
上單調遞減,∴
,且∴
,
,∴
,即∴
,故
得證
解析:(1)當時,
,得
,
令,得
或
.
當時,
,
,所以
,故
在
上單調遞減;
當時,
,
,所以
,故
在
上單調遞增;
當時,
,
,所以
,故
在
上單調遞減;
所以在
,
上單調遞減,在
上單調遞增.
(2)證明:由題意得,其中
,
由得
,由
得
,
所以在
上單調遞增,在
上單調遞減.
∵,
,
,
∴函數有兩個不同的零點,且一個在
內,另一個在
內.
不妨設,
,
要證,即證
,
因為,且
在
上是增函數,
所以,且
,即證
.
由,得
,
令
,
,
則
.
∵,∴
,
,
∴時,
,即
在
上單調遞減,
∴,且∴
,
,
∴,即∴
,故
得證.
科目:高中數學 來源: 題型:
【題目】如圖(1),五邊形中,
.如圖(2),將
沿
折到
的位置,得到四棱錐
.點
為線段
的中點,且
平面
.
(1)求證:平面平面
;
(2)若直線與
所成角的正切值為
,設
,求四棱錐
的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某小店每天以每份5元的價格從食品廠購進若干份食品,然后以每份10元的價格出售.如果當天賣不完,剩下的食品還可以每份1元的價格退回食品廠處理.
(Ⅰ)若小店一天購進16份,求當天的利潤(單位:元)關于當天需求量
(單位:份,
)的函數解析式;
(Ⅱ)小店記錄了100天這種食品的日需求量(單位:份),整理得下表:
日需求量 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天記錄的各需求量的頻率作為各需求量發生的概率.
(i)小店一天購進16份這種食品,表示當天的利潤(單位:元),求
的分布列及數學期望;
(ii)以小店當天利潤的期望值為決策依據,你認為一天應購進食品16份還是17份?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖四棱錐中,
平面
,底面
是梯形,
,
,
,
,
,
為
的中點,
為
上一點,且
(
).
(1)若時,求證:
平面
;
(2)若直線與平面
所成角的正弦值為
,求異面直線
與直線
所成角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
的參數方程是
(
為參數),以
為極點,
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
,且直線
與曲線
交于
兩點.
(Ⅰ)求直線的普通方程及曲線
的直角坐標方程;
(Ⅱ)把直線與
軸的交點記為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國政府實施“互聯網+”戰略以來,手機作為客戶端越來越為人們所青睞,通過手機實現衣食住行消費已經成為一種主要的消費方式,“一機在手,走遍天下”的時代已經到來。在某著名的夜市,隨機調查了100名顧客購物時使用手機支付的情況,得到如下的列聯表,已知其中從使用手機支付的人群中隨機抽取1人,抽到青年的概率為
.
(1)根據已知條件完成列聯表,并根據此資料判斷是否有
的把握認為“市場購物用手機支付與年齡有關”?
(2)現采用分層抽樣從這100名顧客中按照“使用手機支付”和“不使用手機支付”中抽取得到一個容量為5的樣本,設事件為“從這個樣本中任選2人,這2人中至少有1人是不使用手機支付的”,求事件
發生的概率?
列聯表
青年 | 中老年 | 合計 | |
使用手機支付 | 60 | ||
不使用手機支付 | 24 | ||
合計 | 100 |
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的長軸長是短軸長的
倍,且過點
.
(1)求橢圓的標準方程;
(2)若的頂點
、
在橢圓上,
所在的直線斜率為
,
所在的直線斜率為
,若
,求
的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com