【題目】如圖,在三棱柱中,側棱
底面
,
為
的中點,
.
(1)求證:平面
;
(2)求四棱錐的體積.
【答案】(1)見解析;(2)3
【解析】試題分析:(1)欲證平面
,根據線面平行的判定定理可知只需證
與平面
內一直線平行,連接
,設
與
相交于點O,連接
,根據中位線定理可知
∥
,
平面
,
平面
,滿足定理所需條件;
(2)根據面面垂直的判定定理可知平面⊥平面
,作
,垂足為E,則
⊥平面
,然后求出棱長,最后根據四棱錐
,的體積
,即可求四棱錐
的體積.
(1)證明:連接,設
與
相交于點
,連接
,
∵ 四邊形是平行四邊形,
∴點為
的中點.
∵為
的中點,
∴為△
的中位線,
∴.
∵
平面
,
平面
,
∴平面
.
(2)∵平面
,
平面
,
∴ 平面
平面
,且平面
平面
.
作,垂足為
,則
平面
,
∵,
,
在Rt△中,
,
,
∴四棱錐的體積
.
∴四棱錐的體積為
.
科目:高中數學 來源: 題型:
【題目】【2018湖北七市(州)教研協作體3月高三聯考】已知橢圓:
的左頂點為
,上頂點為
,直線
與直線
垂直,垂足為
點,且點
是線段
的中點.
(I)求橢圓的方程;
(II)如圖,若直線:
與橢圓
交于
,
兩點,點
在橢圓
上,且四邊形
為平行四邊形,求證:四邊形
的面積
為定值.
【答案】(I);(II)
【解析】試題分析:(1)根據題意可得,
故斜率為
,由直線
與直線
垂直,可得
,因為點
是線段
的中點,∴點
的坐標是
,
代入直線得,連立方程即可得
,
;(2)∵四邊形
為平行四邊形,∴
,設
,
,
,∴
,得
,將
點坐標代入橢圓
方程得
,
點到直線
的距離為
,利用弦長公式得EF,則平行四邊形
的面積為
.
解析:(1)由題意知,橢圓的左頂點
,上頂點
,直線
的斜率
,
得,
因為點是線段
的中點,∴點
的坐標是
,
由點在直線
上,∴
,且
,
解得,
,
∴橢圓的方程為
.
(2)設,
,
,
將代入
消去
并整理得
,
則,
,
,
∵四邊形為平行四邊形,∴
,
得,將
點坐標代入橢圓
方程得
,
點到直線
的距離為
,
,
∴平行四邊形的面積為
.
故平行四邊形的面積
為定值
.
【題型】解答題
【結束】
21
【題目】已知函數,
.
(1)當時,討論函數
的單調性;
(2)當時,求證:函數
有兩個不相等的零點
,
,且
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線的極坐標方程是
,以極點為原點,極軸為
軸正方向建立平面直角坐標系,曲線
的直角坐標方程是
(
為參數).
(Ⅰ)將曲線的參數方程化為普通方程;
(Ⅱ)求曲線與曲線
交點的極坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知是拋物線
上的兩個點,點
的坐標為
,直線
的斜率為
.設拋物線
的焦點在直線
的下方.
(Ⅰ)求k的取值范圍;
(Ⅱ)設C為W上一點,且,過
兩點分別作W的切線,記兩切線的交點為
. 判斷四邊形
是否為梯形,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線
的極坐標方程為
,過點
的直線
的參數方程為
(
為參數),直線
與曲線
相交于
兩點.
(1)寫出曲線的直角坐標方程和直線
的普通方程;
(2)若,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}的前n項和為Sn.已知2Sn=3n+3.
(1)求{an}的通項公式;
(2)若數列{bn}滿足anbn=log3an,求{bn}的前n項和Tn.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com