精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓C: + =1(a>b>D)的離心率為 ,過右焦點F的直線l與C相交于A、B兩點,當l的斜率為1時,坐標原點O到l的距離為
(1)求a、b的值;
(2)C上是否存在點P,使得當l繞P轉到某一位置時,有 = + 成立?若存在,求出所有的P的坐標與l的方程;若不存在,說明理由.

【答案】
(1)解:直線l的方程為y=x﹣c,則 = ,解得c=1,

,b2=a2﹣c2,解得 ,b2=2.

∴得 ,b=


(2)解:由(1)可得:橢圓C的方程為 =1.

假設C上存在點P,使得當l繞P轉到某一位置時,有 = + 成立.設A(x1,y1),B(x2,y2).

設直線l的方程為my=x﹣1,聯立 ,

化為(2m2+3)y2+4my﹣4=0,

∴y1+y2=

∴x1+x2=m(y1+y2)+2=

= + =(x1+x2,y1+y2)=

代入橢圓方程可得: + =1,

化為2m2﹣1=0,

解得m=

∴直線l的方程為:y= (x﹣1).

由方程: ﹣1=0,

解得 , ,

因此假設正確


【解析】(1)直線l的方程為y=x﹣c,則 = ,解得c,又 ,b2=a2﹣c2,解得a,b即可得出.(2)由(1)可得:橢圓C的方程為 =1.假設C上存在點P,使得當l繞P轉到某一位置時,有 = + 成立.設A(x1,y1),B(x2,y2).

設直線l的方程為my=x﹣1,與橢圓方程聯立化為(2m2+3)y2+4my﹣4=0,利用根與系數的關系及其 = + =(x1+x2,y1+y2),可得點P的坐標(用m表示),代入橢圓的方程即可得出.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= sinxcosx﹣cos2x﹣
(Ⅰ)求函數f(x)的對稱軸方程;
(Ⅱ)將函數f(x)的圖象上各點的縱坐標保持不變,橫坐標伸長為原來的2倍,然后再向左平移 個單位,得到函數g(x)的圖象.若a,b,c分別是△ABC三個內角A,B,C的對邊,a=2,c=4,且g(B)=0,求b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 ,圓 的圓心在橢圓上,點到橢圓的右焦點的距離為.

(1)求橢圓的標準方程;

(2)過點作互相垂直的兩條直線,且交橢圓兩點,直線交圓, 兩點,且的中點,求面積的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某高中組織數學知識競賽,采取答題闖關的形式,分兩種題型,每種題型設兩關.“數學文化”題答對一道得5分,“數學應用”題答對一道得10分,答對一道題即可進入下一關,否則終止比賽.有甲、乙、丙三人前來參賽,設三人答對每道題的概率分別是 、 、 ,三人答題互不影響.甲、乙選擇“數學文化”題,丙選擇“數學應用”題.
(Ⅰ)求乙、丙兩人所得分數相等的概率;
(Ⅱ)設甲、丙兩人所得分數之和為隨機變量X,求X的分布列與期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)的定義域為R,f(﹣2)=2021,對任意x∈(﹣∞,+∞),都有f'(x)<2x成立,則不等式f(x)>x2+2017的解集為(
A.(﹣2,+∞)
B.(﹣2,2)
C.(﹣∞,﹣2)
D.(﹣∞,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為研究男女同學空間想象能力的差異,孫老師從高一年級隨機選取了20名男生、20名女生,進行空間圖形識別測試,得到成績莖葉圖如下,假定成績大于等于80分的同學為“空間想象能力突出”,低于80分的同學為“空間想象能力正!保
(1)完成下面2×2列聯表,

空間想象能力突出

空間想象能力正常

合計

男生

女生

合計


(2)判斷是否有90%的把握認為“空間想象能力突出”與性別有關;
(3)從“空間想象能力突出”的同學中隨機選取男生2名、女生2名,記其中成績超過90分的人數為ξ,求隨機變量ξ的分布列和數學期望. 下面公式及臨界值表僅供參考:

P(X2≥k)

0.100

0.050

0.010

k

2.706

3.841

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列命題中正確命題的個數是 ①對于命題p:x∈R,使得x2+x+1<0,則p:x∈R,均有x2+x+1>0;
②命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題;
③設ξ~B(n,p),已知Eξ=3,Dξ= ,則n與p值分別為12,
④m=3是直線(m+3)x+my﹣2=0與直線mx﹣6y+5=0互相垂直的充要條件.(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面內將點A(2,1)繞原點按逆時針方向旋轉 ,得到點B,則點B的坐標為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某城市為了解游客人數的變化規律,提高旅游服務質量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數據,繪制了下面的折線圖.
根據該折線圖,下列結論錯誤的是(
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视