【題目】已知a是常數,對任意實數x,不等式|x+1|﹣|2﹣x|≤a≤|x+1|+|2﹣x|都成立.
(Ⅰ)求a的值;
(Ⅱ)設m>n>0,求證:2m+ ≥2n+a.
【答案】(Ⅰ)解:|x+1|﹣|2﹣x|≤|x+1+2﹣x|=3,3=|x+1+2﹣x|≤|x+1|+|2﹣x|
∵對任意實數x,不等式|x+1|﹣|2﹣x|≤a≤|x+1|+|2﹣x|都成立,
∴a=3;
(Ⅱ)證明:2m+ ﹣2n=(m﹣n)+(m﹣n)+
,
∵m>n>0,
∴(m﹣n)+(m﹣n)+ ≥3
=3,
∴2m+ ﹣2n≥3,
即2m+ ≥2n+a
【解析】(Ⅰ)利用絕對值不等式求最值,即可求a的值;
(Ⅱ)作差,利用基本不等式證明結論.
【考點精析】本題主要考查了絕對值不等式的解法和不等式的證明的相關知識點,需要掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規律:關鍵是去掉絕對值的符號;不等式證明的幾種常用方法:常用方法有:比較法(作差,作商法)、綜合法、分析法;其它方法有:換元法、反證法、放縮法、構造法,函數單調性法,數學歸納法等才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】數列{an}的前n項a1 , a2 , …,an(n∈N*)組成集合An={a1 , a2 , …,an},從集合An中任取k(k=1,2,3,…,n)個數,其所有可能的k個數的乘積的和為Tk(若只取一個數,規定乘積為此數本身),例如:對于數列{2n﹣1},當n=1時,A1={1},T1=1;n=2時,A2={1,3},T1=1+3,T2=13;
(1)若集合An={1,3,5,…,2n﹣1},求當n=3時,T1 , T2 , T3的值;
(2)若集合An={1,3,7,…,2n﹣1},證明:n=k時集合Ak的Tm與n=k+1時集合Ak+1的Tm(為了以示區別,用Tm′表示)有關系式Tm′=(2k+1﹣1)Tm﹣1+Tm , 其中m,k∈N*,2≤m≤k;
(3)對于(2)中集合An . 定義Sn=T1+T2+…+Tn , 求Sn(用n表示).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}是公差為2的等差數列,數列{bn}滿足 ,若n∈N*時,anbn+1﹣bn+1=nbn .
(Ⅰ)求{bn}的通項公式;
(Ⅱ)設cn=anbn , 求{cn}的前n項和Sn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如果一個數列從第2項起,每一項與它前一項的差都大于2,則稱這個數列為“H型數列”.
(1)若數列{an}為“H型數列”,且a1= ﹣3,a2=
,a3=4,求實數m的取值范圍;
(2)是否存在首項為1的等差數列{an}為“H型數列”,且其前n項和Sn滿足Sn<n2+n(n∈N*)?若存在,請求出{an}的通項公式;若不存在,請說明理由.
(3)已知等比數列{an}的每一項均為正整數,且{an}為“H型數列”,bn= an , cn=
,當數列{bn}不是“H型數列”時,試判斷數列{cn}是否為“H型數列”,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com