【題目】已知函數 ,關于x的方程f2(x)+a|f(x)|+b=0(a,b∈R)恰有6個不同實數解,則a的取值范圍是 .
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2﹣2x+c,且f(x)>0的解集是 .
(1)求f(2)的最小值及f(2)取最小值時f(x)的解析式;
(2)在f(2)取得最小值時,若對于任意的x>2,f(x)+4≥m(x﹣2)恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:x2+y2+2x﹣4y+3=0.
(1)若不過原點的直線l與圓C相切,且在x軸,y軸上的截距相等,求直線l的方程;
(2)從圓C外一點P(x,y)向圓引一條切線,切點為M,O為坐標原點,且有|PM|=|PO|,求點P的軌跡方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,平面ABEF⊥平面ABC,四邊形ABEF為矩形,AC=BC.O為AB的中點,OF⊥EC.
(1)求證:OE⊥FC:
(2)若 時,求二面角F﹣CE﹣B的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,有一塊邊長為1(百米)的正方形區域ABCD.在點A處有一個可轉動的探照燈,其照射角∠PAQ始終為45°(其中點P,Q分別在邊BC,CD上),設BP=t.
(I)用t表示出PQ的長度,并探求△CPQ的周長l是否為定值;
(Ⅱ)設探照燈照射在正方形ABCD內部區域的面積S(平方百米),求S的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】人們生活水平的提高,越來越注重科學飲食.營養學家指出,成人良好的日常飲食應該至少提供0.075kg的碳水化合物,0.06kg的蛋白質,0.06kg的脂肪.1kg食物A含有0.105kg碳水化合物,0.07kg蛋白質,0.14kg脂肪,花費28元;而1kg食物B含有0.105kg碳水化合物,0.14kg蛋白質,0.07kg脂肪,花費21元.為了滿足營養專家指出的日常飲食要求,同時使花費最低,每天需要同時食用食物A和食物B多少kg?最低花費是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設a,b是兩個實數,給出下列條件:
①a+b>1;②a+b=2;③a+b>2;④a2+b2>2;⑤ab>1.
其中能推出:“a,b中至少有一個大于1”的條件是 .(填序號,只有一個正確選項)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知中心在原點的雙曲線C的右焦點為(2,0),右頂點為( ,0)
(1)求雙曲線C的方程;
(2)若直線l:y=kx+ 與雙曲線C恒有兩個不同的交點A和B,且
>2(其中O為原點).求k的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com