精英家教網 > 高中數學 > 題目詳情

已知f(x)=xln x,g(x)=x3ax2x+2.
(1)求函數f(x)的單調區間;
(2)求f(x)在區間[t,t+2](t>0)上的最小值;
(3)對一切的x∈(0,+∞),2f(x)<g′(x)+2恒成立,求實數a的取值范圍.

(1)f(x)的遞減區間是,遞增區間為(2)f(x)min(3)[-2,+∞)

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知a∈R,函數f(x)=+ln x-1.
(1)當a=1時,求曲線y=f(x)在點(2,f(2))處的切線方程;
(2)求f(x)在區間(0,e]上的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,.
(1)若,設函數,求的極大值;
(2)設函數,討論的單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知x=3是函數f(x)=aln(1+x)+x2-10x的一個極值點.
(1)求a;
(2)求函數f(x)的單調區間;
(3)若直線yb與函數yf(x)的圖象有3個交點,求b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求函數的單調區間;
(2)若方程有解,求實數m的取值范圍;
(3)若存在實數,使成立,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知向量m=(ex,ln xk),n=(1,f(x)],mn(k為常數),曲線yf(x)在點(1,f(1))處的切線與y軸垂直,F(x)=xexf′(x).
(1)求k的值及F(x)的單調區間;
(2)已知函數g(x)=-x2+2ax(a為正實數),若對于任意x2∈[0,1],總存在x1∈(0,+∞),使得g(x2)<F(x1),求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)若,求證:當時,;
(2)若在區間上單調遞增,試求的取值范圍;
(3)求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中.
(1)當時,求函數處的切線方程;
(2)若函數在區間(1,2)上不是單調函數,試求的取值范圍;
(3)已知,如果存在,使得函數處取得最小值,試求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,.
(Ⅰ)若處相切,試求的表達式;
(Ⅱ)若上是減函數,求實數的取值范圍;
(Ⅲ)證明不等式: .

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视