科目:高中數學 來源: 題型:解答題
在直角坐標系中,以原點為極點,x軸的正半輻為極軸建立極坐標系,已知曲線,過點P(-2,-4)的直線
的參數方程為:
(t為參數),直線
與曲線C相交于M,N兩點.
(Ⅰ)寫出曲線C的直角坐標方程和直線的普通方程;
(Ⅱ)若成等比數列,求a的值
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設數列{an}的各項均為正數.若對任意的n∈N*,存在k∈N*,使得=an·an+2k成立,則稱數列{an}為“Jk型”數列.
(1)若數列{an}是“J2型”數列,且a2=8,a8=1,求a2n;
(2)若數列{an}既是“J3型”數列,又是“J4型”數列,證明:數列{an}是等比數列.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(13分)(2011•重慶)設{an}是公比為正數的等比數列a1=2,a3=a2+4.
(Ⅰ)求{an}的通項公式;
(Ⅱ)設{bn}是首項為1,公差為2的等差數列,求數列{an+bn}的前n項和Sn.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知數列{an}為等差數列,a3=5,a7=13,數列{bn}的前n項和為Sn,且有Sn=2bn-1,
(1)求{an},{bn}的通項公式.
(2)若cn=anbn,{cn}的前n項和為Tn,求Tn.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設數列{an}的首項不為零,前n項和為Sn,且對任意的r,tN*,都有
.
(1)求數列{an}的通項公式(用a1表示);
(2)設a1=1,b1=3,,求證:數列
為等比數列;
(3)在(2)的條件下,求.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com