已知數列{an}為等差數列,a3=5,a7=13,數列{bn}的前n項和為Sn,且有Sn=2bn-1,
(1)求{an},{bn}的通項公式.
(2)若cn=anbn,{cn}的前n項和為Tn,求Tn.
科目:高中數學 來源: 題型:解答題
(14分)(2011•天津)已知數列{an}與{bn}滿足bn+1an+bnan+1=(﹣2)n+1,bn=,n∈N*,且a1=2.
(Ⅰ)求a2,a3的值
(Ⅱ)設cn=a2n+1﹣a2n﹣1,n∈N*,證明{cn}是等比數列
(Ⅲ)設Sn為{an}的前n項和,證明+
+…+
+
≤n﹣
(n∈N*)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(2013•湖北)已知Sn是等比數列{an}的前n項和,S4,S2,S3成等差數列,且a2+a3+a4=﹣18.
(1)求數列{an}的通項公式;
(2)是否存在正整數n,使得Sn≥2013?若存在,求出符合條件的所有n的集合;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
學校餐廳每天供應500名學生用餐,每星期一有A,B兩種菜可供選擇。調查表明,凡是在這星期一選A菜的,下星期一會有改選B菜;而選B菜的,下星期一會有
改選A菜。用
分別表示第
個星期選A的人數和選B的人數.
⑴試用表示
,判斷數列
是否成等比數列并說明理由;
⑵若第一個星期一選A神菜的有200人,那么第10個星期一選A種菜的大約有多少人?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設數列{an}的前n項和為Sn,數列{Sn}的前n項和為Tn,滿足Tn=2Sn-n2,n∈N*.
(1)求a1的值;
(2)求數列{an}的通項公式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com