【題目】我國古代數學名著《續古摘奇算法》(楊輝)一書中有關于三階幻方的問題:將1,2,3,4,5,6,7,8,9分別填入3×3的方格中,使得每一行,每一列及對角線上的三個數的和都相等(如圖所示),我們規定:只要兩個幻方的對應位置(如每行第一列的方格)中的數字不全相同,就稱為不同的幻方,那么不同的三階幻方的個數是( )
4 | 9 | 2 |
3 | 5 | 7 |
8 | 1 | 6 |
A.9B.8C.6D.4
科目:高中數學 來源: 題型:
【題目】已如橢圓C:的兩個焦點與其中一個頂點構成一個斜邊長為4的等腰直角三角形.
(1)求橢圓C的標準方程;
(2)設動直線l交橢圓C于P,Q兩點,直線OP,OQ的斜率分別為k,k'.若,求證△OPQ的面積為定值,并求此定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某公園有三條觀光大道、
、
圍成直角三角形,其中直角邊
,斜邊
.
(1)若甲乙都以每分鐘100的速度從點
出發,甲沿
運動,乙沿
運動,乙比甲遲2分鐘出發,求乙出發后的第1分鐘末甲乙之間的距離;
(2)現有甲、乙、丙三位小朋友分別在點、
、
,設
,乙丙之間的距離
是甲乙之間距離
的2倍,且
,請將甲乙之間的距離
表示為
的函數,并求甲乙之間的最小距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設,
是兩條不同的直線,
,
,
是三個不同的平面,給出下列四個命題:(1)若
,
,則
;(2)若
,
,
,則
;(3)若
,
,則
;(4)若
,
,則
,其中正確命題的序號是( )
A.(1)(2)B.(2)(3)
C.(3)(4)D.(1)(4)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓錐的頂點為,底面圓心為
,半徑為
.
(1)設圓錐的母線長為,求圓錐的體積;
(2)設,
、
是底面半徑,且
,
為線段
的中點,如圖.求異面直線
與
所成的角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,已知橢圓
的離心率為
,點
在橢圓上,若圓
的一條切線(斜率存在)與橢圓C有兩個交點A,B,且
.
(1)求橢圓的標準方程;
(2)求圓O的標準方程;
(3)已知橢圓C的上頂點為M,點N在圓O上,直線MN與橢圓C相交于另一點Q,且,求直線MN的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設集合是實數集
的子集,如果正實數
滿足:對任意
都存在
使得
則稱
為集合
的一個“跨度”,已知三個命題:
(1)若為集合
的“跨度”,則
也是集合
的“跨度”;
(2)集合的“跨度”的最大值是4;
(3)是集合
的“跨度”.
這三個命題中正確的個數是()
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓(
)的離心率為
,且經過點
.
(1)求橢圓的方程;
(2)過點作直線
與橢圓
交于不同的兩點
,
,試問在
軸上是否存在定點
使得直線
與直線
恰關于
軸對稱?若存在,求出點
的坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com