【題目】已知拋物線(
)與雙曲線
(
,
)有相同的焦點
,點
是兩條曲線的一個交點,且
軸,則該雙曲線經過一、三象限的漸近線的傾斜角所在的區間是( )
A. B.
C.
D.
科目:高中數學 來源: 題型:
【題目】已知拋物線C:=2px(p>0)的準線方程為x=-
,F為拋物線的焦點
(I)求拋物線C的方程;
(II)若P是拋物線C上一點,點A的坐標為(,2),求
的最小值;
(III)若過點F且斜率為1的直線與拋物線C交于M,N兩點,求線段MN的中點坐標。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列{an}中的項按順序可以排成如圖的形式,第一行1項,排a1;第二行2項,從左到右分別排a2,a3;第三行3項,……依此類推,設數列{an}的前n項和為Sn,則滿足Sn>2019的最小正整數n的值為()
A. 20B. 21C. 26D. 27
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市規定,高中學生在校期間須參加不少于80小時的社區服務才合格.某校隨機抽取20位學生參加社區服務的數據,按時間段(單位:小時)進行統計,其頻率分布直方圖如圖所示.
(1)求抽取的20人中,參加社區服務時間不少于90小時的學生人數;
(2)從參加社區服務時間不少于90小時的學生中任意選取2人,求所選學生的參加社區服務時間在同一時間段內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下表提供了某廠節能降耗技術改造后生產甲產品過程中記錄的產量(噸)與相應的生產能耗
(噸)標準煤的幾組對照數據
(1)請根據上表提供的數據,用最小二乘法求出關于
的線性回歸方程
;
(2)已知該廠技改前100噸甲產品的生產能耗為90噸標準煤.試根據(1)求出的線性回歸方程,預測生產100噸甲產品的生產能耗比技改前降低多少噸標準煤?
參考公式:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】改革開放以來,人們的支付方式發生了巨大轉變.近年來,移動支付已成為主要支付方式之一.為了解某校學生上個月A,B兩種移動支付方式的使用情況,從全校學生中隨機抽取了100人,發現樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學生的支付金額分布情況如下:
支付方式 | (0,1000] | (1000,2000] | 大于2000 |
僅使用A | 18人 | 9人 | 3人 |
僅使用B | 10人 | 14人 | 1人 |
(Ⅰ)從全校學生中隨機抽取1人,估計該學生上個月A,B兩種支付方式都使用的概率;
(Ⅱ)從樣本僅使用A和僅使用B的學生中各隨機抽取1人,以X表示這2人中上個月支付金額大于1000元的人數,求X的分布列和數學期望;
(Ⅲ)已知上個月樣本學生的支付方式在本月沒有變化.現從樣本僅使用A的學生中,隨機抽查3人,發現他們本月的支付金額都大于2000元.根據抽查結果,能否認為樣本僅使用A的學生中本月支付金額大于2000元的人數有變化?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某闖關游戲規劃是:先后擲兩枚骰子,將此試驗重復輪,第
輪的點數分別記為
,如果點數滿足
,則認為第
輪闖關成功,否則進行下一輪投擲,直到闖關成功,游戲結束.
(1)求第1輪闖關成功的概率;
(2)如果第輪闖關成功所獲的獎金(單位:元)
,求某人闖關獲得獎金不超過2500元的概率;
(3)如果游戲只進行到第4輪,第4輪后無論游戲成功與否,都終止游戲,記進行的輪數為隨機變量,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某省有關部門要求各中小學要把“每天鍛煉一小時”寫入課程表,為了響應這一號召,某校圍繞著“你最喜歡的體育活動項目是什么?(只寫一項”的問題,對在校學生進行了隨機抽樣調查,從而得到一組數據.圖(1)是根據這組數據繪制的條形統計圖.請結合統計圖回答下列問題:
(1)該校對多少名學生進行了抽樣調查?
(2)本次抽樣調查中,最喜歡籃球活動的有多少人?占被調查人數的百分比是多少?
(3)若該校九年級共有200名學生,圖(2)是根據各年級學生人數占全校學生總人數的百分比繪制的扇形統計圖,請你估計全校學生中最喜歡跳繩活動的人數為多少.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com