【題目】隨著經濟模式的改變,微商和電商已成為當今城鄉一種新型的購銷平臺.已知經銷某種商品的電商在任何一個銷售季度內,每售出噸該商品可獲利潤
萬元,未售出的商品,每
噸虧損
萬元.根據往年的銷售經驗,得到一個銷售季度內市場需求量的頻率分布直方圖如圖所示.已知電商為下一個銷售季度籌備了
噸該商品.現以
(單位:噸,
)表示下一個銷售季度的市場需求量,
(單位:萬元)表示該電商下一個銷售季度內經銷該商品獲得的利潤.
(1)將表示為
的函數,求出該函數表達式;
(2)根據直方圖估計利潤不少于57萬元的概率;
(3)根據頻率分布直方圖,估計一個銷售季度內市場需求量的平均數與中位數的大小(保留到小數點后一位).
【答案】(1);(2)0.7;(3)平均數為
(噸),估計中位數應為
(噸)
【解析】
(1)分別計算和
時T的值,用分段函數表示T的解析式;
(2)計算利潤T不少于57萬元時x的取值范圍,求出對應的頻率值即可;
(3)利用每一小組底邊的中點乘以對應的矩形的面積(即頻率)求和得出平均數,根據中位數兩邊頻率相等(即矩形面積和相等)求出中位數的大小.
解:(1)當時,
;
當時,
,
所以,;
(2)根據頻率分布直方圖及(1)知,
當時,由
,得
,
當時,由
所以,利潤不少于57萬元當且僅當
,
于是由頻率分布直方圖可知市場需求量的頻率為
,
所以下一個銷售季度內的利潤不少于57萬元的概率的估計值為0.7;
(3)估計一個銷售季度內市場需求量的平均數為
(噸)
由頻率分布直方圖易知,
由于時,對應的頻率為
,
而時,對應的頻率為
,
因此一個銷售季度內市場需求量的中位數應屬于區間
,于是估計中位數應為
(噸).
科目:高中數學 來源: 題型:
【題目】對某產品1到6月份銷售量及其價格進行調查,其售價x和銷售量y之間的一組數據如下表所示:
月份i | 1 | 2 | 3 | 4 | 5 | 6 |
單價 | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
銷售量 | 11 | 10 | 8 | 6 | 5 | 14 |
(1)根據1至5月份的數據,求出y關于x的回歸直線方程;
(2)若由回歸直線方程得到的估計數據與剩下的檢驗數據的誤差不超過0.5元,則認為所得到的回歸直線方程是理想的,試問所得到的回歸直線方程是否理想?
(3)預計在今后的銷售中,銷售量與單價仍然服從(1)中的關系,且該產品的成本是2.5元/件,為獲得最大利潤,該產品的單價應定為多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學校書店新進了一套精品古典四大名著:《紅樓夢》、《三國演義》、《西游記》、《水滸傳》共四本書,每本名著數量足夠多,今有五名同學去書店買書,由于價格較高,五名同學打算每人只選擇一本購買.
(1)求“每本書都有同學買到”的概率;
(2)求“對于每個同學,均存在另一個同學與其購買的書相同”的概率;
(3)記X為五位同學購買相同書的個數的最大值,求X的分布列和數學期望E(X).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校高三年級有400名學生參加某項體育測試,根據男女學生人數比例,使用分層抽樣的方法從中抽取了100名學生,記錄他們的分數,將數據分成7組:,整理得到如下頻率分布直方圖:
(1)若該樣本中男生有55人,試估計該學校高三年級女生總人數;
(2)若規定小于60分為“不及格”,從該學校高三年級學生中隨機抽取一人,估計該學生不及格的概率;
(3)若規定分數在為“良好”,
為“優秀”.用頻率估計概率,從該校高三年級隨機抽取三人,記該項測試分數為“良好”或“優秀”的人數為X,求X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l的方程為x=﹣2,且直線l與x軸交于點M,圓O:與x軸交于A,B兩點(如圖).
(1)過M點的直線l1交圓于P、Q兩點,且O點到直線l1的距離為,求直線l1的方程;
(2)求以l為準線,中心在原點,且短軸長為圓O的半徑的橢圓方程;
(3)過M點的圓的切線l2,交(2)中的一個橢圓于C、D兩點,其中C、D兩點在x軸上方,求線段CD的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)的圖象向左平移1個單位后關于y軸對稱,當x2>x1>1時,[f(x2)﹣f(x1)](x2﹣x1)<0恒成立,設a=f(),b=f(2),c=f(3),則a、b、c的大小關系為( 。
A.c>a>bB.c>b>aC.a>c>bD.b>a>c
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數為奇函數,
,其中
.
(1)若函數的圖像過點
,求實數
和
的值;
(2)若,試判斷函數
在
上的單調性并證明;
(3)設函數,若對每一個不小于3的實數
,都恰有一個小于3的實數
,使得
成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知的圖象關于原點對稱,其中a為常數.
(1)求a的值,并寫出函數f(x)的單調區間(不需要求解過程);
(2)若關于x的方程在[2,3]上有解,求k的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com