【題目】函數是數學中重要的概念之一,同學們在初三、高一分別學習過,也知曉其發展過程.1692年,德國數學家萊布尼茨首次使用function這個詞,1734年瑞士數學家歐拉首次使用符號f(x)表示函數.1859年我國清代數學家李善蘭將function譯作函數,“函”意味著信件,巧妙地揭示了對應關系.密碼學中的加密和解密其實就是函數與反函數.對自變量恰當地賦值是處理函數問題,尤其是處理抽象函數問題的常用方法之一.請你解答下列問題.
已知函數f(x)滿足:對任意的整數a,b均有f(a+b)=f(a) +f(b)+ab+2,且f(-2)=-3.求f(96)的值.
【答案】4750
【解析】
在f(a+b)=f(a)+f(b)+ab+2中,令a=b=a,得
f(0)=f(0)+f(0)+0+2,于是f(0)=-2.
在f(a+b)=f(a)+f(b)+ab+2中,令a=2,b=-2,得f(0)=f(2)+f(-2)-4+2.
∴-2=f(2)_3-4+2,f(2)=3.
在f(a+b)=f(a)+f(b)+ab+2中,令a=n-2,b=2,得
f(n)=f(n-2)+f(2)+2(n-2)+2=f(n-2)+3+2(n-2)+2=f(n-2)+2n+l.
∴f(n)-f(n-2)=2n+1.
∴f(96)-f(94)=2×96+1,
f(94)-f(92)=2×94+1,
f(94)-f(92)=2×94+1,
……
上述等式左右兩邊分別相加,得f(96)-f(2)=2(96+94+…+4)+47.
∴.
科目:高中數學 來源: 題型:
【題目】已知三棱錐A﹣BCD中,AB、AC、AD兩兩垂直且長度均為10,定長為 的線段MN的一個端點M在棱AB上運動,另一個端點N在△ACD內運動(含邊界),線段MN的中點P的軌跡的面積為2π,則m的值等于 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高中有高一新生500名,分成水平相同的兩類教學實驗,為對比教學效果,現用分層抽樣的方法從
兩類學生中分別抽取了40人,60人進行測試
(1)求該學校高一新生兩類學生各多少人?
(2)經過測試,得到以下三個數據圖表:
圖1:75分以上兩類參加測試學生成績的莖葉圖
圖2:100名測試學生成績的頻率分布直方圖
下圖表格:100名學生成績分布表:
①先填寫頻率分布表中的六個空格,然后將頻率分布直方圖(圖2)補充完整;
②該學校擬定從參加考試的79分以上(含79分)的類學生中隨機抽取2人代表學校參加市比賽,求抽到的2人分數都在80分以上的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校為了解該校教師對教工食堂的滿意度情況,隨機訪問了名教師.根據這
名教師對該食堂的評分,繪制頻率分布直方圖(如圖所示),其中樣本數據分組區間為:
,
,…,
,
.
(1)求頻率分布直方圖中的值;
(2)從評分在的受訪教師中,隨機抽取2人,求此2人的評分都在
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2018河北保定市上學期期末調研】已知點到點
的距離比到
軸的距離大1.
(I)求點的軌跡
的方程;
(II)設直線:
,交軌跡
于
、
兩點,
為坐標原點,試在軌跡
的
部分上求一點
,使得
的面積最大,并求其最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】工廠需要圍建一個面積為512的矩形堆料場,一邊可以利用原有的墻壁,其他三邊需要砌新的墻壁.我們知道,砌起的新墻的總長度
(單位:
)是利用原有墻壁長度
(單位:
)的函數.
(1)寫出關于
的函數解析式,確定
的取值范圍.
(2)堆料場的長、寬之比為多少時,需要砌起的新墻用的材料最省?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=e﹣x(lnx﹣2k)(k為常數,e=2.71828…是自然對數的底數),曲線y=f(x)在點(1,f(1))處的切線與y軸垂直.
(1)求f(x)的單調區間;
(2)設 ,對任意x>0,證明:(x+1)g(x)<ex+ex﹣2 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com