【題目】已知a∈R,函數f(x)=(﹣x2+ax)ex , (x∈R,e為自然對數的底數)
(1)當a=2時,求函數f(x)的單調遞增區間.
(2)函數f(x)是否為R上的單調函數,若是,求出a的取值范圍;若不是,請說明理由.
【答案】
(1)解:當a=2時,f(x)=(﹣x2+2x)ex,
∴f′(x)=﹣(x2﹣2)ex
令f′(x)>0,得x2﹣2<0,
∴﹣ <x<
∴f(x)的單調遞增區間是(﹣ ,
)
(2)解:∵f′(x)=[﹣x2+(a﹣2)x+a]ex,
記g(x)=﹣x2+(a﹣2)x+a,
∴△=(a﹣2)2+4a=a2+4>0,
∴x∈R時,g(x)的值有正有負,
而x∈R時,ex>0恒成立,
于是x∈R時,f′(x)的值有正有負,
故函數f(x)的不是R上的單調函數
【解析】(1)求導函數,令f′(x)>0,可得f(x)的單調遞增區間,(2),求導函數,判斷出f′(x)的值有正有負,故函數f(x)的不是R上的單調函數.
【考點精析】掌握利用導數研究函數的單調性是解答本題的根本,需要知道一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減.
科目:高中數學 來源: 題型:
【題目】某商場舉行購物抽獎活動,抽獎箱中放有除編號不同外,其余均相同的20個小球,這20個小球編號的莖葉圖如圖所示,活動規則如下:從抽獎箱中隨機抽取一球,若抽取的小球編號是十位數字為l的奇數,則為一等獎,獎金100元;若抽取的小球編號是十位數字為2的奇數,則為二等獎,獎金50元;若抽取的小球是其余編號則不中獎.現某顧客有放回的抽獎兩次,兩次抽獎相互獨立. (I)求該顧客在兩次抽獎中恰有一次中獎的概率;
(Ⅱ)記該顧客兩次抽獎后的獎金之和為隨機變量X,求X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C1在平面直角坐標系中的參數方程為(t為參數),以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系,有曲線C2:ρ=2cosθ-4sinθ
(1)將C1的方程化為普通方程,并求出C2的平面直角坐標方程
(2)求曲線C1和C2兩交點之間的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是y=f(x)的導函數的圖象,現有四種說法: 1)f(x)在(﹣2,1)上是增函數;
2)x=﹣1是f(x)的極小值點;
3)f(x)在(﹣1,2)上是增函數;
4)x=2是f(x)的極小值點;
以上說法正確的序號是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(sinx+cosx)2+2cos2x
(1)求函數f(x)的最小正周期和單調減區間;
(2)求使f(x)≥3成立的x的取值集合.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖y=f(x)的導函數的圖象,現有四種說法:
(1)f(x)在(﹣3,1)上是增函數;
(2)x=﹣1是f(x)的極小值點;
(3)f(x)在(2,4)上是減函數,在(﹣1,2)上是增函數;
(4)x=2是f(x)的極小值點;
以上正確的序號為( )
A.(1)(2)
B.(2)(3)
C.(3)(4)
D.(4)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com