精英家教網 > 高中數學 > 題目詳情

【題目】在△ABC中,角A,B,C的對邊分別是a,b,c,且 acosC=(2b﹣ c)cosA.
(1)求角A的大;
(2)求cos( ﹣B)﹣2sin2 的取值范圍.

【答案】
(1)解:由正弦定理可得, ,

從而可得, ,即sinB=2sinBcosA,

又B為三角形的內角,所以sinB≠0,于是

又A亦為三角形內角,因此,


(2)解:∵

= ,

= ,

可知, ,所以 ,從而 ,

因此,

的取值范圍為


【解析】(1)由正弦定理化簡等式整理可得sinB=2sinBcosA,又sinB≠0,可求 ,結合A為內角即可求得A的值.(2)由三角函數恒等變換化簡已知可得 sin(B﹣ )﹣1,由 可求B﹣ 的范圍,從而可求 ,即可得解.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足a1=1,an+1=1﹣ ,其中n∈N*
(Ⅰ)設bn= ,求證:數列{bn}是等差數列,并求出{an}的通項公式an;
(Ⅱ)設Cn= ,數列{CnCn+2}的前n項和為Tn , 是否存在正整數m,使得Tn 對于n∈N*恒成立,若存在,求出m的最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著經濟模式的改變,微商和電商已成為當今城鄉一種新型的購銷平臺.已知經銷某種商品的電商在任何一個銷售季度內,每售出1噸該商品可獲利潤0.5萬元,未售出的商品,每1噸虧損0.3萬元.根據往年的銷售經驗,得到一個銷售季度內市場需求量的頻率分布直方圖如右圖所示.已知電商為下一個銷售季度籌備了130噸該商品.現以x(單位:噸,100≤x≤150)表示下一個銷售季度的市場需求量,T(單位:萬元)表示該電商下一個銷售季度內經銷該商品獲得的利潤. (Ⅰ)視x分布在各區間內的頻率為相應的概率,求P(x≥120)
(Ⅱ)將T表示為x的函數,求出該函數表達式;
(Ⅲ)在頻率分布直方圖的市場需求量分組中,以各組的區間中點值(組中值)代表該組的各個值,并以市場需求量落入該區間的頻率作為市場需求量取該組中值的概率(例如x∈[100,110),則取x=105,且x=105的概率等于市場需求量落入100,110)的頻率),求T的分布列及數學期望E(T).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】曲線 的一條切線l與y=x,y軸三條直線圍成三角形記為△OAB,則△OAB外接圓面積的最小值為(
A. ??
B. ??
C. ??
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】閱讀如圖所示的程序框圖,則該算法的功能是(
A.計算數列{2n1}前5項的和
B.計算數列{2n﹣1}前5項的和
C.計算數列{2n1}前6項的和
D.計算數列{2n﹣1}前6項的和

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C的極坐標方程為ρsin2θ=2acosθ(a>0),直線l的參數方程為 (t為參數),直線l與曲線C相交于A,B兩點.
(1)寫出曲線C的直角坐標方程和直線l的普通方程;
(2)若|AB|=2 ,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 的導函數, 為自然對數的底數.
(1)討論 的單調性;
(2)當 時,證明: ;
(3)當 時,判斷函數 零點的個數,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在矩陣A的變換下,坐標平面上的點的橫坐標伸長到原來的3倍,縱坐標不變.
(1)求矩陣A及A1;
(2)求圓x2+y2=4在矩陣A1的變換下得到的曲線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知{an}為等比數列,a1=1,a4=27; Sn為等差數列{bn} 的前n 項和,b1=3,S5=35.
(1)求{an}和{bn} 的通項公式;
(2)設數列{cn} 滿足cn=anbn(n∈N*),求數列{cn} 的前n 項和Tn

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视