【題目】鳳梨穗龍眼原產廈門,是廈門市的名果,栽培歷史已有多年.龍眼干的級別按直徑
的大小分為四個等級,其中直徑在區間
為特級品,在
的為一級品,在
的為二級品,在
的為三級品,某商家為了解某農場一批龍眼干的質量情況,隨機抽取了
個龍眼干作為樣本(直徑分布在區間
),統計得到這些龍眼干的直徑的頻數分布表如下:
頻數 | 1 | 29 | 7 |
用分層抽樣的方法從樣本的一級品和特級品中抽取個,其中一級品有
個.
(1)求、
的值,并估計這些龍眼干中特級品的比例;
(2)已知樣本中的個龍眼干約
克,該農場有
千克龍眼干待出售,商家提出兩種收購方案:
方案A:以元/千克收購;
方案B:以級別分裝收購,每袋個,特級品
元/袋、一級品
元/袋、二級品
元/袋、三級品
元/袋.用樣本的頻率分布估計總體分布,哪個方案農場的收益更高?并說明理由.
【答案】(1),
,這些龍眼干中特級品的比例為
(2)見解析
【解析】
(1)根據樣本容量以及分層抽樣的性質,列出方程組求解得出、
的值,再估計這些龍眼干中特級品的比例;
(2)農場選擇方案獲得的收入為
元,設農場選擇方案
獲得的收入為
元,依題意先計算500千克龍眼干共可以分成多少袋,再利用樣本估計總體,分別明確特級品,一級品,二級品,三級品各多少袋,再計算得出
,即可得出結論.
(1),解得
所抽取的100個龍果干中特級品的頻率為
這些龍眼干中特級品的比例為
(2)農場選擇方案獲得的收入為
元
設農場選擇方案獲得的收入為
元,則依題意得500千克龍眼干共可以1000袋
用樣本的頻率分布估計總體分布,則特級品有袋,一級品有
袋,二級品有
袋,三級品有
袋
元
,
農場應選擇方案
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數方程為(其中t為參數).以坐標原點O為極點,x軸非負半軸為極軸建立極坐標系,曲線C的極坐標方程為
.
(1)求l和C的直角坐標方程.
(2)設點,直線l交曲線C于A,B兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《周髀算經》中給出了勾股定理的絕妙證明.如圖是趙爽弦圖及注文.弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成朱色及黃色,其面積稱為朱實、黃實.由2×勾×股+(股-勾)2=4×朱實+黃實=弦實,化簡得勾2+股2=弦2.若圖中勾股形的勾股比為,向弦圖內隨機拋擲100顆圖釘(大小忽略不計),則落在黃色圖形內的圖釘顆數大約為( )(參考數據:
,
)
A.2B.4C.6D.8
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C的參數方程為(m為參數),以坐標點O為極點,x軸的非負半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ+
)=1.
(1)求直線l的直角坐標方程和曲線C的普通方程;
(2)已知點M (2,0),若直線l與曲線C相交于P、Q兩點,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
(
為參數),將曲線
上各點縱坐標伸長到原來的2倍(橫坐標不變)得到曲線
,以坐標原點
為極點,
軸正半軸為極軸,建立極坐標系,直線
的極坐標方程為
.
(1)寫出的極坐標方程與直線
的直角坐標方程;
(2)曲線上是否存在不同的兩點
,
(以上兩點坐標均為極坐標,
,
),使點
、
到
的距離都為3?若存在,求
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2020年寒假是特殊的寒假,因為疫情全體學生只能在家進行網上在線學習,為了研究學生在網上學習的情況,某學校在網上隨機抽取120名學生對線上教育進行調查,其中男生與女生的人數之比為11∶13,其中男生30人對于線上教育滿意,女生中有15名表示對線上教育不滿意.
(1)完成列聯表,并回答能否有99%的把握認為對“線上教育是否滿意與性別有關”;
滿意 | 不滿意 | 總計 | |
男生 | |||
女生 | |||
合計 | 120 |
(2)從被調查中對線上教育滿意的學生中,利用分層抽樣抽取8名學生,再在8名學生中抽取3名學生,作線上學習的經驗介紹,其中抽取男生的個數為,求出
的分布列及期望值.
參考公式:附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 0.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】棱臺的三視圖與直觀圖如圖所示.
(1)求證:平面平面
;
(2)在線段上是否存在一點
,使
與平面
所成的角的正弦值為
?若存在,指出點
的位置;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com