精英家教網 > 高中數學 > 題目詳情

【題目】如圖,正方體ABCD﹣A1B1C1D1中,M、N分別為棱C1D1、C1C的中點,有以下四個結論:
①直線AM與CC1是相交直線;
②直線AM與BN是平行直線;
③直線BN與MB1是異面直線;
④直線AM與DD1是異面直線.
其中正確的結論為 (注:把你認為正確的結論的序號都填上).

【答案】③④
【解析】解:∵A、M、C、C1四點不共面
∴直線AM與CC1是異面直線,故①錯誤;
同理,直線AM與BN也是異面直線,故②錯誤.
同理,直線BN與MB1是異面直線,故③正確;
同理,直線AM與DD1是異面直線,故④正確;
所以答案是:③④
【考點精析】根據題目的已知條件,利用空間中直線與直線之間的位置關系的相關知識可以得到問題的答案,需要掌握相交直線:同一平面內,有且只有一個公共點;平行直線:同一平面內,沒有公共點;異面直線: 不同在任何一個平面內,沒有公共點.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】將圓為參數)上的每一點的橫坐標保持不變,縱坐標變為原來的倍,得到曲線

(1)求出的普通方程;

(2)設直線 的交點為 ,以坐標原點為極點, 軸正半軸為極軸建立極坐標系,求過線段的中點且與垂直的直線的極坐標方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數列的前項和,且的等差中項,等差數列滿足,.

(1)求數列、的通項公式;

(2)設,數列的前項和為,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知六棱錐P﹣ABCDEF的底面是正六邊形,PA⊥平面ABC.則下列結論不正確的是( 。

A.CD∥平面PAF
B.DF⊥平面PAF
C.CF∥平面PAB
D.CF⊥平面PAD

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖:在四棱錐中, 平面,底面是正方形, .

(1)求異面直線所成角的大。ńY果用反三角函數值表示);

(2)求點、分別是棱的中點,求證: 平面.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若上的最大值為,求實數的值;

(2)若對任意,都有恒成立,求實數的取值范圍;

(3)在(1)的條件下,設,對任意給定的正實數,曲線 上是否存在兩點,使得是以為坐標原點)為直角頂點的直角三角形,且此三角形斜邊中點在軸上?請說明理由

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知面垂直于圓柱底面, 為底面直徑, 是底面圓周上異于的一點, . 求證:

(1);

(2)求幾何體的最大體積

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)滿足f(x)=x2﹣2(a+2)x+a2 , g(x)=﹣x2+2(a﹣2)x﹣a2+8.設H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max(p,q)表示p,q中的較大值,min(p,q)表示p,q中的較小值),記H1(x)的最小值為A,H2(x)的最大值為B,則A﹣B=( 。
A.a2﹣2a﹣16
B.a2+2a﹣16
C.-16
D.16

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2﹣2ax+2,x∈[﹣5,5]
(1)求實數a的取值范圍,使y=f(x)在定義域上是單調遞減函數;
(2)用g(a)表示函數y=f(x)的最小值,求g(a)的解析式.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视