【題目】已知數列{an}的各項均為正數,Sn是數列{an}的前n項和,且4Sn=an2+2an﹣3.
(1)求數列{an}的通項公式;
(2)已知bn=2n,求Tn=a1b1+a2b2+…+anbn的值.
【答案】(1)an=3+2(n﹣1)=2n+1;
(2)(2n﹣1)2n+2.
【解析】試題分析:(1)由題意知,解得a1=3,由此能夠推出數列{an}是以3為首項,2為公差的等差數列,所以an=3+2(n﹣1)=2n+1.
(2)由題意知Tn=3×21+5×22+…+(2n+1)2n,2Tn=3×22+5×23+(2n﹣1)2n+(2n+1)2n+1,二者相減可得到Tn=a1b1+a2b2+…+anbn的值.
解:(1)當n=1時,,解出a1=3,
又4Sn=an2+2an﹣3①
當n≥2時4sn﹣1=an﹣12+2an﹣1﹣3②
①﹣②4an=an2﹣an﹣12+2(an﹣an﹣1),即an2﹣an﹣12﹣2(an+an﹣1)=0,
∴(an+an﹣1)(an﹣an﹣1﹣2)=0,
∵an+an﹣1>0∴an﹣an﹣1=2(n≥2),
∴數列{an}是以3為首項,2為公差的等差數列,∴an=3+2(n﹣1)=2n+1.
(2)Tn=3×21+5×22+…+(2n+1)2n③
又2Tn=3×22+5×23+(2n﹣1)2n+(2n+1)2n+1④
④﹣③Tn=﹣3×21﹣2(22+23++2n)+(2n+1)2n+1﹣6+8﹣22n﹣1+(2n+1)2n+1=(2n﹣1)2n+2
科目:高中數學 來源: 題型:
【題目】隨著社會的發展,終身學習成為必要,工人知識要更新,學習培訓必不可少,現某工廠有工人1000名,其中250名工人參加短期培訓(稱為類工人),另外750名工人參加過長期培訓(稱為
類工人),從該工廠的工人中共抽查了100名工人,調查他們的生產能力(此處生產能力指一天加工的零件數)得到
類工人生產能力的莖葉圖(左圖),
類工人生產能力的頻率分布直方圖(右圖).
(1)問類、
類工人各抽查了多少工人,并求出直方圖中的
;
(2)求類工人生產能力的中位數,并估計
類工人生產能力的平均數(同一組中的數據用該組區間的中點值作代表);
(3)若規定生產能力在內為能力優秀,由以上統計數據在答題卡上完成下面的
列聯表,并判斷是否可以在犯錯誤概率不超過0.1%的前提下,認為生產能力與培訓時間長短有關.能力與培訓時間列聯表
短期培訓 | 長期培訓 | 合計 | |
能力優秀 | |||
能力不優秀 | |||
合計 |
參考數據:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】高三理科某班有男同學30名,女同學15名,老師按照分層抽樣的方法組建一個6人的課外興趣小組.
(1)求課外興趣小組中男、女同學各應抽取的人數;
(2)在一周的技能培訓后從這6人中選出兩名同學做某項實驗,方法是先從小組里選出1名同學做實驗,該同學做完后,再從小組內剩下的同學中選1名同學做實驗,求選出的兩名同學中恰好僅有一名女同學的概率;
(3)實驗結束后,第一次做實驗的同學得到的實驗數據為1.6、2、1.9、2.5、2,第二次做實驗的同學得到的實驗數據是2.1、1.8、1.9、2、2.2,請問哪位同學的實驗更穩定?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(ax2+bx+c)ex(a>0)的導函數y=f′(x)的兩個零點為-3和0.
(1)求f(x)的單調區間;
(2)若f(x)的極小值為-1,求f(x)的極大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=kex﹣x3+2 (k∈R)恰有三個極值點xl,x2,x3,且xl<x2<x3.
(I)求k的取值范圍:
(II)求f(x2)的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數且
在
處的切線與直線
垂直.
(1)求實數值;
(2)若不等式對任意的實數
及
恒成立,求實數
的取值范圍;
(3)設,且數列
的前
項和為
,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,以
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的方程是
,將
向上平移2個單位得到曲線
.
(1)求曲線的極坐標方程;
(2)直線的參數方程為
(
為參數),判斷直線
與曲線
的位置關系.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系內,已知點及線段
,在線段
上任取一點
,線段
長度的最小值稱為“點
到線段
的距離”,記為
.
(1)設點,線段
,求
;
(2)設,
,
,
,線段
,線段
,若點
滿足
,求
關于
的函數解析式,并寫出該函數的值域.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com