精英家教網 > 高中數學 > 題目詳情

【題目】我國有一道古典數學名著——兩鼠穿墻:“今有垣厚十尺,兩鼠對穿,初日各一尺,大鼠日自倍,小鼠日自半,問幾何日相逢?”題意是:“有兩只老鼠從墻的兩邊打洞穿墻(連線與墻面垂直),大老鼠第一天進一尺,以后每天加倍,小老鼠第一天也進一尺,以后每天減半,那么兩鼠第幾天能見面.”假設墻厚16尺,如圖是源于該題思想的一個程序框圖,則輸出的( )

A. 3 B. 4 C. 5 D. 6

【答案】B

【解析】

由已知中的程序語句可知:該程序的功能是利用循環結構計算并輸出變量n的值,模擬程序的運行過程,分析循環中各變量值的變化情況,可得答案.

程序執行第一次后,,執行第二次后,,執行第3次后,, ,執行第4次后,,跳出循環,輸出,程序結束,故選B.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】100x25的長方形表格中每一格填入一個非負實數,第行第列中填入的數為(如表 1)。然后將表1每列中的數按由大到小的次序從上到下重新排列為,。(如表2)求最小的自然數k,使得只要表1中填入的數滿足則當i≥k時,在表2中就能保證成立。

1 2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知過點的直線與直線垂直.

1 ,且點在函數的圖象上,求直線的一般式方程;

2)若點在直線上,判斷直線是否經過定點?若是,求出該定點的坐標;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,直線與原點為圓心的圓相交所得弦長為.

(1)若直線與圓切于第一象限,且直線與坐標軸交于點,當面積最小時,求直線的方程;

(2)設是圓上任意兩點,點關于軸的對稱點為,若直線分別交于軸與點,問是否為定值?若是,請求處該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出下列命題:

,不等式恒成立;

②若,則

,則的逆否命題;

④若命題,命題,則命題是真命題.

其中,真命題為(

A.①③④B.①②C.①②③D.②③④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓 (a>b>0)的左焦點為F,上頂點為B. 已知橢圓的離心率為A的坐標為,.

I)求橢圓的方程;

II)設直線l 與橢圓在第一象限的交點為P,l與直線AB交于點Q. (O為原點) k的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,側棱底面,,點的中點.

求證:平面;

若直線與平面所成角為,求二面角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】近日,某地普降暴雨,當地一大型提壩發生了滲水現象,當發現時已有的壩面滲水,經測算,壩而每平方米發生滲水現象的直接經濟損失約為元,且滲水面積以每天的速度擴散.當地有關部門在發現的同時立即組織人員搶修滲水壩面,假定每位搶修人員平均每天可搶修滲水面積,該部門需支出服裝補貼費為每人元,勞務費及耗材費為每人每天元.若安排名人員參與搶修,需要天完成搶修工作.

寫出關于的函數關系式;

應安排多少名人員參與搶修,才能使總損失最。ǹ倱p失=因滲水造成的直接損失+部門的各項支出費用)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數,則下列結論錯誤的是( )

A. 是偶函數 B. 的值域是

C. 方程的解只有 D. 方程的解只有

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视