精英家教網 > 高中數學 > 題目詳情

【題目】在直角坐標系xOy中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為,直線l的參數方程為(t為參數,).

(1)寫出直線l的普通方程和曲線C的直角坐標方程;

(2)若直線l與曲線C交于A,B兩點,直線l的傾斜角,P點坐標為,求的最小值.

【答案】(1),;(2).

【解析】

1)討論,消參求出直線方程即可;由代入可求曲線C的直角坐標方程;

2)直線l的參數方程和曲線C的直角坐標方程聯立,求出,,利用參數的幾何意義可知,然后利用輔助角公式以及三角函數的最值即可求解.

(1)①當時,直線l的方程為,

時,直線l的方程為,

由①,②得,直線l的方程可寫成.

,得曲線C的直角坐標方程為.

(2)將直線l的參數方程和曲線C的直角坐標方程聯立得:

,,

(當且僅當時取等號).

最小值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓的左右焦點分別為,離心率為,是橢圓上的一個動點,且面積的最大值為.

(1)求橢圓的方程;

(2)設直線斜率為,且與橢圓的另一個交點為,是否存在點,使得若存在,求的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知多面體中,為矩形,平面,,且,,,點的中點.

1)求證:平面

2)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)若,討論的單調性;

2)若在區間內有兩個極值點,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中,,,分別為內角,的對邊,且滿.

1)求的大小;

2)再在①,②,③這三個條件中,選出兩個使唯一確定的條件補充在下面的問題中,并解答問題.________________,求的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中.

1)當時,求函數圖像在點處的切線;

2)求函數的單調遞減區間;

3)若函數的在區間的最大值為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】冠狀病毒是一個大型病毒家族,己知可引起感冒以及中東呼吸綜合征()和嚴重急性呼吸綜合征()等較嚴重疾病.而今年出現在湖北武漢的新型冠狀病毒()是以前從未在人體中發現的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀、發熱、咳嗽、氣促和呼吸困難等.在較嚴重病例中,感染可導致肺炎、嚴重急性呼吸綜合征、腎衰竭,甚至死亡.

某醫院為篩查冠狀病毒,需要檢驗血液是否為陽性,現有n)份血液樣本,有以下兩種檢驗方式:

方式一:逐份檢驗,則需要檢驗n.

方式二:混合檢驗,將其中k)份血液樣本分別取樣混合在一起檢驗.

若檢驗結果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗一次就夠了,如果檢驗結果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對這k份再逐份檢驗,此時這k份血液的檢驗次數總共為.

假設在接受檢驗的血液樣本中,每份樣本的檢驗結果是陽性還是陰性都是獨立的,且每份樣本是陽性結果的概率為p.現取其中k)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數為,采用混合檢驗方式,樣本需要檢驗的總次數為.

1)若,試求p關于k的函數關系式

2)若p與干擾素計量相關,其中)是不同的正實數,

滿足)都有成立.

i)求證:數列等比數列;

ii)當時,采用混合檢驗方式可以使得樣本需要檢驗的總次數的期望值比逐份檢驗的總次數的期望值更少,求k的最大值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,.

(1)當時,若關于的不等式恒成立,求的取值范圍;

(2)當時,證明: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】黨的十九大報告明確指出要堅決打贏脫貧攻堅戰,讓貧困人口和貧困地區同全國一道進入全面小康社會,要動員全黨全國全社會力量,堅持精準扶貧、精準脫貧,確保到2020年我國現行標準下農村貧困人口實現脫貧.現有扶貧工作組到某山區貧困村實施脫貧工作.經摸底排查,該村現有貧困農戶100戶,他們均從事水果種植,2017年底該村平均每戶年純收入為1萬元,扶貧工作組一方面請有關專家對水果進行品種改良,提高產量;另一方面,抽出部分農戶從事水果包裝、銷售工作,其戶數必須小于種植的戶數.2018年初開始,若該村抽出戶(,)從事水果包裝、銷售.經測算,剩下從事水果種植農戶的年純收入每戶平均比上一年提高,而從事包裝銷售農戶的年純收入每戶平均為萬元.(參考數據:,,,.

1)至2018年底,該村每戶年均純收入能否達到1.32萬元?若能,請求出從事包裝、銷售的戶數;若不能,請說明理由;

2)至2020年底,為使從事水果種植農戶能實現脫貧(即每戶(水果種植農戶)年均純收入不低于1.6萬元),至少要抽出多少戶從事包裝、銷售工作?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视