【題目】設函數f(x)=aln(x+1),g(x)=ex﹣1,其中a∈R,e=2.718…為自然對數的底數.
(Ⅰ)當x≥0時,f(x)≤g(x)恒成立,求a的取值范圍;
(Ⅱ)求證: <
<
(參考數據:ln1.1≈0.095).
【答案】解:(Ⅰ)令h(x)=g(x)﹣f(x),
當x≥0時,h(x)=g(x)﹣f(x)=ex﹣1﹣aln(x+1),h'(x)=ex﹣ ,
(。┤鬭≤1,則 <1<ex,h'(x)>0,h(x)在(0,+∞)遞增,
h(x)≥h(0)=0,滿足題意,
(ⅱ)若a>1,h'(x)=ex﹣ ,在(0,+∞)遞增,h′(x)>h′(0)=1﹣a,1﹣a<0
且x→+∞時,h′(x)→+∞,則x0∈(0,+∞)使h'(x0)=0
進而h(x)在(0,x0)遞減,在(x0,+∞)遞增,存在h(x0)<h(0)=0,不合題意,
故a≤1;
(Ⅱ)證明:由(Ⅰ)知,a=1時,g(x)>f(x)對x>0恒成立,即ex>1+ln(x+1)
令x= ,則
>1+ln1.1≈1.0953>
,
而當a=﹣1時,g(x)>f(x)對x<0恒成立,即ex> x3+x+1,
令x=﹣ ,則
>
(﹣
)3﹣
+1≈
,即
<
,
∴ <
<
.
【解析】本題抓住1.“f(x)≤g(x)恒成立”結合導數求導及其單調性,分類討論a的取值范圍;2.注意觀察清楚第二問的式子結合第一問的相關知識解題。
【考點精析】認真審題,首先需要了解函數的最大(小)值與導數(求函數在
上的最大值與最小值的步驟:(1)求函數
在
內的極值;(2)將函數
的各極值與端點處的函數值
,
比較,其中最大的是一個最大值,最小的是最小值).
科目:高中數學 來源: 題型:
【題目】設定義在(0,+∞)上的單調函數f(x),對任意的x∈(0,+∞)都有f[f(x)﹣log2x]=3,若方程f(x)+f′(x)=a有兩個不同的實數根,則實數a的取值范圍是( 。
A.(1,+∞)
B.(2+ ,+∞)
C.(2﹣ ,+∞)
D.(3,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某校隨機抽取部分男生進行身體素質測試,獲得擲實心球的成績數據,整理得到數據分組及頻率分布表,成績在11.0米(精確到0.1米)以上(含)的男生為“優秀生”.
分組(米) | 頻數 | 頻率 |
[3.0,5.0) | 0.10 | |
[5.0,7.0) | 0.10 | |
[7.0,9.0) | 0.10 | |
[9.0,11.0) | 0.20 | |
[11.0,13.0) | 0.40 | |
[13.0,15.0) | 10 | |
合計 | 1.00 |
(Ⅰ)求參加測試的男生中“優秀生”的人數;
(Ⅱ)從參加測試男生的成績中,根據表中分組情況,按分層抽樣的方法抽取10名男生的成績作為一個樣本,再從該樣本中任選2名男生的成績,求至少選出1名男生的成績不低于13.0米的概率;
(Ⅲ)若將這次測試的頻率作為概率,從該校全體男生中隨機抽取3人,記X表示3人中“優秀生”的人數,求X的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等腰梯形ABCD中AB∥CD,AB=2CD=4,∠BAD=60°,雙曲線以A,B為焦點,且與線段CD(包括端點C、D)有兩個交點,則該雙曲線的離心率的取值范圍是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在底面為矩形的四棱椎P﹣ABCD中,PB⊥AB.
(1)證明:平面PBC⊥平面PCD;
(2)若異面直線PC與BD所成角為60°,PB=AB,PB⊥BC,求二面角B﹣PD﹣C的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在數列{an}及{bn}中,an+1=an+bn+ =1.設
,則數列{cn}的前n項和為( )
A.
B.2n+2﹣4
C.3×2n+2n﹣4
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓 :
(
)與直線
:
相切,設點
為圓上一動點,
軸于
,且動點
滿足
,設動點
的軌跡為曲線
.
(1)求曲線 的方程;
(2)直線 與直線
垂直且與曲線
交于
,
兩點,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地一年的氣溫Q(t)(單位:℃)與時間t(月份)之間的關系如圖所示,已知該年的平均氣溫為10 ℃,令C(t)表示時間段[0,t]的平均氣溫,下列四個函數圖象中,最能表示C(t)與t之間的函數關系的是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com