【題目】已知橢圓 經過點
,且離心率為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設A,B是橢圓C的左,右頂點,P為橢圓上異于A,B的一點,以原點O為端點分別作與直線AP和BP平行的射線,交橢圓C于M,N兩點,求證:△OMN的面積為定值.
【答案】解:(Ⅰ)∵橢圓 經過點
,且離心率為
,
∴ ,解得a=2,b=
,
∴橢圓C的方程為 .
證明:(Ⅱ)設P(x0 , y0),M(x1 , y1),N(x2 , y2),
①M(x1 , y1),N(x2 , y2)在x軸同側,不妨設x1>0,x2<0,y1>0,y2>0,
射線OM的方程為y= ,射線ON的方程為y=
,
∴ ,
,且
,
過M,N作x軸的垂線,垂足分別為M′,N′, ﹣
=
=
= =
=﹣
,
由 ,得
,
即 =
=2+x0 ,
同理, =2﹣x0 , ∴
=4﹣
=2
,即
,
∴ .
②M(x1 , y1),N(x2 , y2)在x軸異側,同理①得 ,
綜合①②,△OMN的面積為定值
【解析】(Ⅰ)由橢圓經過點 ,且離心率為
,列出方程給求出a,b,由此能求出橢圓C的方程.(Ⅱ)設P(x0 , y0),M(x1 , y1),N(x2 , y2),當M(x1 , y1),N(x2 , y2)在x軸同側,不妨設x1>0,x2<0,y1>0,y2>0,推導出
,
,且
,過M,N作x軸的垂線,垂足分別為M′,N′,
﹣
=﹣
,由
,得
,由此求出
.當M(x1 , y1),N(x2 , y2)在x軸異側,同理得
,由此能證明△OMN的面積為定值
.
【考點精析】解答此題的關鍵在于理解橢圓的標準方程的相關知識,掌握橢圓標準方程焦點在x軸:,焦點在y軸:
.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=﹣x2+2bx+c,設函數g(x)=|f(x)|在區間[﹣1,1]上的最大值為M.
(1)若b=2,試求出M;
(2)若M≥k對任意的b、c恒成立,試求k的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C的方程為(x﹣3)2+y2=1,圓M的方程為(x﹣3﹣3cosθ)2+(y﹣3sinθ)2=1(θ∈R),過M上任意一點P作圓C的兩條切線PA,PB,切點分別為A、B,則∠APB的最大值為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={a1 , a2 , …,an},ai∈R,i=1,2,…,n,并且n≥2. 定義 (例如:
).
(Ⅰ)若A={1,2,3,4,5,6,7,8,9,10},M={1,2,3,4,5},集合A的子集N滿足:N≠M,且T(M)=T(N),求出一個符合條件的N;
(Ⅱ)對于任意給定的常數C以及給定的集合A={a1 , a2 , …,an},求證:存在集合B={b1 , b2 , …,bn},使得T(B)=T(A),且 .
(Ⅲ)已知集合A={a1 , a2 , …,a2m}滿足:ai<ai+1 , i=1,2,…,2m﹣1,m≥2,a1=a,a2m=b,其中a,b∈R為給定的常數,求T(A)的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某加工廠用某原料由車間加工出A產品,由乙車間加工出B產品.甲車間加工一箱原料需耗費工時10小時可加工出7千克A產品,每千克A產品獲利40元.乙車間加工一箱原料需耗費工時6小時可加工出4千克B產品,每千克B產品獲利50元.甲、乙兩車間每天功能完成至多70多箱原料的加工,每天甲、乙車間耗費工時總和不得超過480小時,甲、乙兩車間每天獲利最大的生產計劃為( )
A.甲車間加工原料10箱,乙車間加工原料60箱
B.甲車間加工原料15箱,乙車間加工原料55箱
C.甲車間加工原料18箱,乙車間加工原料50箱
D.甲車間加工原料40箱,乙車間加工原料30箱
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數f(x)=x﹣ sin2x+asinx在(﹣∞,+∞)單調遞增,則a的取值范圍是( )
A.[﹣1,1]
B.[﹣1, ]
C.[﹣ ,
]
D.[﹣1,﹣ ]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在單調遞增數列{an}中,a1=2,a2=4,且a2n﹣1 , a2n , a2n+1成等差數列,a2n , a2n+1 , a2n+2成等比數列,n=1,2,3,….
(Ⅰ)(ⅰ)求證:數列 為等差數列;
(ⅱ)求數列{an}的通項公式.
(Ⅱ)設數列 的前n項和為Sn , 證明:Sn>
,n∈N* .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com