精英家教網 > 高中數學 > 題目詳情

已知數列滿足,其中N*.
(Ⅰ)設,求證:數列是等差數列,并求出的通項公式;
(Ⅱ)設,數列的前項和為,是否存在正整數,使得對于N*恒成立,若存在,求出的最小值,若不存在,請說明理由.

(Ⅰ)詳見解析;(Ⅱ)3

解析試題分析:(Ⅰ)利用等差數列的定義即可證明該數列導數是等差數列,然后求首項、公差即可得出的通項公式;(Ⅱ)首先求得的通項公式,然后根據裂項求和得,根據題意得出關于不等式解之即可.
試題解析:(I)證明
,
所以數列是等差數列,,因此
,
.           8分
(II),,
所以,
依題意要使對于恒成立,只需
解得,所以的最小值為           15分
考點:1.等差數列;2.裂項求和.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設數列{an}共有n)項,且,對每個i (1≤iiN),均有
(1)當時,寫出滿足條件的所有數列{an}(不必寫出過程);
(2)當時,求滿足條件的數列{an}的個數.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設數列{an} 的前n項和為Sn,滿足2Sn=an+1﹣2n+1+1,n∈N*,且a1,a2+5,a3成等差數列.
(1)求a1,a2,a3的值;
(2)求證:數列{an+2n}是等比數列;
(3)證明:對一切正整數n,有++…+

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2013年我國汽車擁有量已超過2億(目前只有中國和美國超過2億),為了控制汽車尾氣對環境的污染,國家鼓勵和補貼購買小排量汽車的消費者,同時在部分地區采取對新車限量上號.某市采取對新車限量上號政策,已知2013年年初汽車擁有量為=100萬輛),第年(2013年為第1年,2014年為第2年,依次類推)年初的擁有量記為,該年的增長量的乘積成正比,比例系數為其中=200萬.
(1)證明:
(2)用表示;并說明該市汽車總擁有量是否能控制在200萬輛內.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)設函數的圖像的頂點的縱坐標構成數列,求證:為等差數列;
(Ⅱ)設函數的圖像的頂點到軸的距離構成數列,求的前項和

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列,,
(1)求證:為等比數列,并求出通項公式;
(2)記數列 的前項和為,求

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列的首項其中令集合.
(Ⅰ)若,寫出集合中的所有的元素;
(Ⅱ)若,且數列中恰好存在連續的7項構成等比數列,求的所有可能取值構成的集合;
(Ⅲ)求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知正項數列的前項和為的等比中項.
(1)求證:數列是等差數列;
(2)若,且,求數列的通項公式;
(3)在(2)的條件下,若,求數列的前項和.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

數列滿足
(1)計算,,,,由此猜想通項公式,并用數學歸納法證明此猜想;
(2)若數列滿足,求證:

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视