【題目】某種產品的質量以其質量指標衡量,并依據質量指標值劃分等級如表:
質量指標值m | m<185 | 185≤m<205 | M≥205 |
等級 | 三等品 | 二等品 | 一等品 |
從某企業生產的這種產品中抽取200件,檢測后得到如下的頻率分布直方圖:
(1)根據以上抽樣調查的數據,能否認為該企業生產這種產品符合“一、二等品至少要占到全部產品的92%的規定”?
(2)在樣本中,按產品等級用分層抽樣的方法抽取8件,再從這8件產品中隨機抽取4件,求抽取的4件產品中,一、二、三等品都有的概率;
(3)該企業為提高產品的質量,開展了“質量提升月”活動,活動后再抽樣檢測,產品質量指標值X近似滿足X~N(218,140),則“質量提升月”活動后的質量指標值的均值比活動前大約提升了多少?
【答案】
(1)解:根據抽樣調查數據,一、二等品所占比例的估計值為
0.200+0.300+0.260+0.090+0.025=0.875,
由于該估計值小于0.92,故不能認為該企業生產的這種產品
符合“一、二等品至少要占到全部產品的92%的規定”;
(2)由頻率分布直方圖知,一、二、三等品的頻率分別為0.375、0.5和0.125,
故在樣本中,一等品3件,二等品4件,三等品1件;
再從這8件產品中隨機抽取4件,一、二、三等品都有的情形有2種,
①一等品2件,二等品1件,三等品1件;
②一等品1件,二等品2件,三等品1件,
故所求的概率為P= =
;
(3)“質量提升月”活動前,該企業這種產品的質量指標值的均值約為
170×0.025+180×0.1+190×0.2+200×0.3+210×0.26+220×0.09+230×0.025=200.4;
“質量提升月”活動后,產品質量指標值X近似滿足X~N(218,140),
則數學期望E(X)=218;
所以“質量提升月”活動后的質量指標值的均值比活動前大約提升了
218﹣200.4=17.6.
【解析】(1)根據抽樣調查數據,一、二等品所占比例的估計值為0.875,故不能認為該企業生產的這種產品符合“一、二等品至少要占到全部產品的92%的規定”(2)由頻率分布直方圖知,一、二、三等品的頻率分別為0.375、0.5和0.125,再由古典概型可得到所求概率,(3)根據數據得到企業這種產品的質量指標值的均值約為200.4;由于產品質量指標值X近似滿足X~N(218,140),則數學期望E(X)=218;所以提升了17.6.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=aex﹣2x﹣2a,且a∈[1,2],設函數f(x)在區間[0,ln2]上的最小值為m,則m的取值范圍是( )
A.[﹣2,﹣2ln2]
B.[﹣2,﹣ ]
C.[﹣2ln2,﹣1]
D.[﹣1,﹣ ]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx﹣kx+k(k∈R).
(Ⅰ)求f(x)在[1,2]上的最小值;
(Ⅱ)若 ,對x∈(﹣1,1)恒成立,求正數a的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=|ax﹣1|,若實數a>0,不等式f(x)≤3的解集是{x|﹣1≤x≤2}.
(Ⅰ)求a的值;
(Ⅱ)若 <|k|存在實數解,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出關于雙曲線的三個命題:
①雙曲線 ﹣
=1的漸近線方程是y=±
x;
②若點(2,3)在焦距為4的雙曲線 ﹣
=1上,則此雙曲線的離心率e=2;
③若點F,B分別是雙曲線 ﹣
=1的一個焦點和虛軸的一個端點,則線段FB的中點一定不在此雙曲線的漸近線上.
其中正確命題的個數是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國有個名句“運籌帷幄之中,決勝千里之外”.其中的“籌”原意是指《孫子算經》中記載的算籌,古代是用算籌來進行計算,算籌是將幾寸長的小竹棍擺在平面上進行運算,算籌的擺放形式有縱橫兩種形式,如下表:
表示一個多位數時,像阿拉伯計數一樣,把各個數位的數碼從左到右排列,但各位數碼的籌式需要縱橫相間,個位,百位,萬位數用縱式表示,十位,千位,十萬位用橫式表示,以此類推,例如6613用算籌表示就是: ,則5288用算籌式可表示為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點P是圓F1:(x﹣1)2+y2=8上任意一點,點F2與點F1關于原點對稱,線段PF2的垂直平分線分別與PF1 , PF2交于M,N兩點.
(1)求點M的軌跡C的方程;
(2)過點 的動直線l與點M的軌跡C交于A,B兩點,在y軸上是否存在定點Q,使以AB為直徑的圓恒過這個點?若存在,求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】四支足球隊進行單循環比賽(每兩隊比賽一場),每場比賽勝者得3分,負者得0分,平局雙方各得1分.比賽結束后發現沒有足球隊全勝,且四隊得分各不相同,則所有比賽中最多可能出現的平局場數是( 。
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業生產A,B兩種產品,生產每一噸產品所需的勞動力、煤和電如下表:
產品品種 | 勞動力(個) | 煤(噸) | 電(千瓦時) |
A產品 | 3 | 9 | 4 |
B產品 | 10 | 4 | 5 |
已知生產每噸A產品的利潤是7萬元,生產每噸B產品的利潤是12萬元,現因條件限制,該企業僅有勞動力300個,煤360噸,并且供電局只能供電200千瓦時,試問該企業如何安排生產,才能獲得最大利潤?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com