【題目】已知函數(
).
(1)若曲線在點
處的切線與直線
垂直,求函數
的單調區間;
(2)若對于任意,都有
成立,試求a的取值范圍.
科目:高中數學 來源: 題型:
【題目】隨著網絡和智能手機的普及與快速發展,許多可以解答各學科問題的搜題軟件走紅.有教育工作者認為:網搜答案可以起到拓展思路的作用,但是對多數學生來講,容易產生依賴心理,對學習能力造成損害.為了了解網絡搜題在學生中的使用情況,某校對學生在一周時間內進行網絡搜題的頻數進行了問卷調查,并從參與調查的學生中抽取了男、女學生各50人進行抽樣分析,得到如下樣本頻數分布表:
將學生在一周時間內進行網絡搜題頻數超過20次的行為視為“經常使用網絡搜題”,不超過20次的視為“偶爾或不用網絡搜題”.
(1)根據已有數據,完成下列列聯表(單位:人)中數據的填寫,并判斷是否在犯錯誤的概率不超過1%的前提下有把握認為使用網絡搜題與性別有關?
(2)將上述調查所得到的頻率視為概率,從該校所有參與調查的學生中,采用隨機抽樣的方法每次抽取一個人,抽取4人,記經常使用網絡搜題的人數為,若每次抽取的結果是相互獨立的,求隨機變量
的分布列和數學期望.
參考公式:,其中
.
參考數據:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《朗讀者》是一檔文化情感類節目,以個人成長、情感體驗、背景故事與傳世佳作相結合的方式,選用精美的文字,用最平實的情感讀出文字背后的價值,深受人們的喜愛.為了了解人們對該節目的喜愛程度,某調查機構隨機調查了,
兩個城市各100名觀眾,得到下面的列聯表.
非常喜愛 | 喜愛 | 合計 | |
| 60 | 100 | |
| 30 | ||
合計 | 200 |
完成上表,并根據以上數據,判斷是否有的把握認為觀眾的喜愛程度與所處的城市有關?
附參考公式和數據:(其中
).
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某快遞公司在某市的貨物轉運中心,擬引進智能機器人分揀系統,以提高分揀效率和降低物流成本,已知購買x臺機器人的總成本p(x)=萬元.
(1)若使每臺機器人的平均成本最低,問應買多少臺?
(2)現按(1)中的數量購買機器人,需要安排m人將郵件放在機器人上,機器人將郵件送達指定落袋格口完成分揀,經實驗知,每臺機器人的日平均分揀量q(m)= (單位:件),已知傳統人工分揀每人每日的平均分揀量為1200件,問引進機器人后,日平均分揀量達最大值時,用人數量比引進機器人前的用人數量最多可減少百分之幾?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,其中
是自然對數的底數,
.
(1) 若是函數
的導函數,當
時,解關于
的不等式
;
(2) 若在
上是單調增函數,求
的取值范圍;
(3) 當時,求整數
的所有值,使方程
在
上有解.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=ax2+bx+c(a≠0),滿足條件f(x+1)-f(x)=2x(x∈R),且f(0)=1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)當x≥0時,f(x)≥mx-3恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過橢圓E:1(a>b>0)上一動點P向圓O:x2+y2=b2引兩條切線PA,PB,切點分別是A,B.直線AB分別與x軸,y軸交于點M,N(O為坐標原點).
(1)若在橢圓E上存在點P,滿足PA⊥PB,求橢圓E的離心率的取值范圍;
(2)求證:在橢圓E內,存在一點C滿足|CO|=|CA|=|CP|=|CB|;
(3)若橢圓E的短軸長為2,△MON面積的最小值為,求橢圓E的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com