【題目】若從裝有個紅球和
個黑球的口袋內任取
個球,則下列為互斥的兩個事件是( )
A.“至少有一個黑球”與“都是黑球”B.“一個紅球也沒有”與“都是黑球”
C.“至少有一個紅球”與“都是紅球”D.“恰有個黑球”與“恰有
個黑球”
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,四邊形
為平行四邊形,
,
為
中點,
(1)求證:平面
;
(2)若是正三角形,且
.
(Ⅰ)當點在線段
上什么位置時,有
平面
?
(Ⅱ)在(Ⅰ)的條件下,點在線段
上什么位置時,有平面
平面
?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)為二次函數,且f(x+1)+f(x﹣1)=2x2﹣4x,
(1)求f(x)的解析式;
(2)設g(x)=f(2x)﹣m2x+1,其中x∈[0,1],m為常數且m∈R,求函數g(x)的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本題14分)下表提供了某廠節能降耗技術改造后生產甲產品過程中記錄的產量(噸)與相應的生產能耗
(噸)標準煤的幾組對照數據:
3 | 4 | 5 | 6 | |
2.5 | 3 | 4 | 4.5 |
(1)請畫出上表數據的散點圖;并指出x,y 是否線性相關;
(2)請根據上表提供的數據,用最小二乘法求出關于
的線性回歸方程
;
(3)已知該廠技術改造前100噸甲產品能耗為90噸標準煤,試根據(2)求出的線性回歸方程,預測生產100噸甲產品的生產能耗比技術改造前降低多少噸標準煤?
(參考:用最小二乘法求線性回歸方程系數公式,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】費馬點是指三角形內到三角形三個頂點距離之和最小的點。當三角形三個內角均小于時,費馬點與三個頂點連線正好三等分費馬點所在的周角,即該點所對的三角形三邊的張角相等均為
。根據以上性質,函數
的最小值為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2016·桂林高二檢測)如圖所示,在四邊形ABCD中,AB=AD=CD=1,BD=,BD⊥CD,將四邊形ABCD沿對角線BD折成四面體A′-BCD,使平面A′BD⊥平面BCD,則下列結論正確的是________.
(1)A′C⊥BD.(2)∠BA′C=90°.
(3)CA′與平面A′BD所成的角為30°.
(4)四面體A′-BCD的體積為.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com