【題目】在直角△ABC中,∠BCA=90°,CA=CB=1,P為AB邊上的點且 =λ
,若
≥
,則λ的取值范圍是( )
A.[ ,1]
B.[ ,1]
C.[ ,
]
D.[ ,
]
科目:高中數學 來源: 題型:
【題目】已知F為拋物線y2=x的焦點,點A,B在該拋物線上且位于x軸的兩側, =2(其中O為坐標原點),則△ABO與△AFO面積之和的最小值是( )
A.2
B.3
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期是π,若將其圖象向右平移
個單位后得到的圖象關于原點對稱,則函數f(x)的圖象( )
A.關于直線x= 對稱
B.關于直線x= 對稱
C.關于點( ,0)對稱
D.關于點( ,0)對稱
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本題滿分16分)數列,
,
滿足:
,
,
.
(1)若數列是等差數列,求證:數列
是等差數列;
(2)若數列,
都是等差數列,求證:數列
從第二項起為等差數列;
(3)若數列是等差數列,試判斷當
時,數列
是否成等差數列?證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,已知角A、B、C所對的邊分別為a、b、c,且a2+b2﹣c2= ab.
(1)求角C的大;
(2)如果0<A≤ ,m=2cos2
﹣sinB﹣1,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ln(x+ ﹣2)(a>0) (Ⅰ)當1<a<4時,函數f(x)在[2,4]上的最小值為ln
,求a;
(Ⅱ)若存在x0∈(2,+∞),使得f(x0)<0,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在半徑為 ,圓心角為60°的扇形的弧上任取一點P,作扇形的內接矩形PNMQ,使點Q在OA上,點N,M在OB上,設矩形PNMQ的面積為y,∠POB=θ.
(1)將y表示成θ的函數關系式,并寫出定義域;
(2)求矩形PNMQ的面積取得最大值時
的值;
(3)求矩形PNMQ的面積y≥ 的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某海濱浴場每年夏季每天的海浪高度y(米)是時間x(0≤x≤24,單位:小時)的函數,記作y=f(x),下表是每年夏季每天某些時刻的浪高數據:
x(時) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(米) | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 |
(1)經觀察發現可以用三角函數y=Acosωx+b對這些數據進行擬合,求函數f(x)的表達式;
(2)浴場規定,每天白天當海浪高度高于1.25米時,才對沖浪愛好者開放,求沖浪者每天白天可以在哪個時段到該浴場進行沖浪運動?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com