精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,異面直線AB1與BC1所成的角為 , 二面角C1﹣AB﹣C的大小為 . (均用度數表示)

【答案】60°;45°
【解析】解:∵AB1∥DC1 , ∴∠BC1D是異面直線AB1與BC1所成的角,
∵DC1=DB=BC1
∴∠BC1D=60°.
∴異面直線AB1與BC1所成的角為60°.
∵BC1⊥AB,BC⊥AB,
∴∠CBC1是二面角C1﹣AB﹣C的平面角,
∵BC=CC1 , BC⊥CC1
∴∠CBC1=45°,
∴二面角C1﹣AB﹣C的大小為45°.
所以答案是:60°,45°.
【考點精析】本題主要考查了異面直線及其所成的角的相關知識點,需要掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發現兩條異面直線間的關系才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2+ax(a>0)在[﹣1,2]上的最大值為8,函數g(x)是h(x)=ex的反函數.
(1)求函數g(f(x))的單調區間;
(2)求證:函數y=f(x)h(x)﹣ (x>0)恰有一個零點x0 , 且g(x0)<x02h(x0)﹣1 (參考數據:e=2.71828…,ln2≈0.693).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,邊長為4的正方形ABCD所在平面與正三角形PAD所在平面互相垂直,M,Q分別為PC,AD的中點.
(1)求證:PA∥平面MBD;
(2)求二面角P﹣BD﹣A的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數 的圖象為C,則如下結論中正確的是(寫出所有正確結論的編號).
①圖象C關于直線 對稱;
②圖象C關于點 對稱;
③函數f(x)在區間 內是減函數;
④把函數 的圖象上點的橫坐標壓縮為原來的一半(縱坐標不變)可以得到圖象C.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知正項數列{an}的前n和為Sn , 且 與(an+1)2的等比中項.
(1)求證:數列{an}是等差數列;
(2)若 ,數列{bn}的前n項和為Tn , 求Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】歐巴老師布置給時鎮同學這樣一份數學作業:在同一個直角坐標系中畫出四個對數函數的圖象,使它們的底數分別為 .時鎮同學為了和暮煙同學出去玩,問大英同學借了作業本很快就抄好了,詳見如圖.第二天,歐巴老師當堂質問時鎮同學:“你畫的四條曲線中,哪條是底數為e的對數函數圖象?”時鎮同學無言以對,憋得滿臉通紅,眼看時鎮同學就要被歐巴老師訓斥一番,聰明睿智的你能不能幫他一把,回答這個問題呢?曲線才是底數為e的對數函數的圖象.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知關于x,y的方程C:x2+y2﹣2x﹣4y+m=0
(1)當方程C表示圓時,求m的取值范圍;
(2)若圓C與直線l1:x+2y﹣4=0相交于M,N兩點,且|MN|= ,求m的值;
(3)在(2)條件下,若圓C上存在四點到直線l2:x﹣2y+b=0的距離均為 ,試求b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,記正方形ABCD四條邊的中點為S,M,N,T,連接四個中點得小正方形SMNT.將正方形ABCD,正方形SMNT繞對角線AC旋轉一周得到的兩個旋轉體的體積依次記為V1 , V2 , 則V1:V2=(

A.8:1
B.2:1
C.4:3
D.8:3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了得到函數 的圖象,可以將函數y=cos2x的圖象( )
A.向左平移 個單位長度
B.向左平移 個單位長度
C.向右平移 個單位長度
D.向右平移 個單位長度

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视