精英家教網 > 高中數學 > 題目詳情

【題目】某種產品特約經銷商根據以往當地的需求情況,得出如下該種產品日需求量的頻率分布直方圖.

⑴求圖中a的值,并估計日需求量的眾數;

⑵某日,經銷商購進130件該種產品,根據近期市場行情,當天每售出1件能獲利30元,未售出的部分,每件虧損20元。設當天需求量為件(),純利潤為S元.

①將S表示為的函數;②據頻率分布直方圖估計當天純利潤S不少于3400元的概率。

【答案】(1)a=0.025 ;眾數為125;(2)0.7

【解析】

試題分析:(1)利用頻率分布直方圖中所有的小長方形的面積之和為一求出的值,利用直方圖中最高的小長方形底邊的中點的橫坐標求出眾數;

2)()設當天的需求量為件,當時,全部售出,獲利元;若,剩余件,可得純利潤為元,由此可將表示為的函數(分段函數);

)由()中所得函數解出純利潤不少于元時的范圍,再利用直方圖中頻率估計相應的概率值.

試題解析:解:(1)由直方圖可知:

0.013+0.015+0.017++0.030×10=1,

. 2

估計日需求量的眾數為125. 4

2)()當時,6

時,8

. 9

)若 ,

. 11

由直方圖可知當時的頻率是,

可估計當天純利潤S不少于3400元的概率是0.7. 14

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知等差數列{an}的前n項和為Sn , 且 ,S20=17,則S30為(
A.15
B.20
C.25
D.30

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下面有五個命題:① 函數的最小正周期是;② 終邊在軸上的角的集合是;③ 在同一坐標系中,函數的圖象和函數的圖象有三個公共點;④ 把函數;;其中真命題的序號是( )

A. ①③ B. ①④ C. ②③ D. ③④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某地一天中6時至14時的溫度變化曲線近似滿足函數T=Asin(ωt+φ)+B(其中<φ<π)6時至14時期間的溫度變化曲線如圖所示,它是上述函數的半個周期的圖象,那么圖中曲線對應的函數解析式是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=sin+cos , x∈R.
(1)求函數f(x)的最小正周期,并求函數f(x)在x∈[﹣2π,2π]上的單調遞增區間;
(2)函數f(x)=sinx(x∈R)的圖象經過怎樣的平移和伸縮變換可以得到函數f(x)的圖象.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是函數的導函數的圖象,給出下列命題:

①是函數的極值點;
②是函數的最小值點;
③在處切線的斜率小于零;
④在區間上單調遞增。
則正確命題的序號是( )
A.①②
B.①④
C.②③
D.③④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是函數y=f(x)的導函數y=f′(x)的圖象,給出下列命題:
①﹣3是函數y=f(x)的極值點;
②﹣1是函數y=f(x)的最小值點;
③y=f(x)在x=0處切線的斜率小于零;
④y=f(x)在區間(﹣3,1)上單調遞增.
則正確命題的序號是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】判斷下列命題是全稱命題還是特稱命題,并判斷其真假.

(1)對數函數都是單調函數;

(2)至少有一個整數,它既能被11整除,又能被9整除;

(3)x{x|x0},

(4)x0Z,log2x02.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】O為坐標原點,動點M在橢圓C上,過Mx軸的垂線,垂足為N,點P滿足.

1)求點P的軌跡方程;

(2)設點Q在直線上,且。證明:過點P且垂直于OQ的直線lC的左焦點F.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视