精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=mln(x+1),g(x)= (x>﹣1).
(Ⅰ)討論函數F(x)=f(x)﹣g(x)在(﹣1,+∞)上的單調性;
(Ⅱ)若y=f(x)與y=g(x)的圖象有且僅有一條公切線,試求實數m的值.

【答案】解:(Ⅰ)F′(x)=f′(x)﹣g′(x) = = (x>﹣1),
當m≤0時,F′(x)<0,函數F(x)在(﹣1,+∞)上單調遞減;
當m>0時,令F′(x)<0,可得x<﹣1+ ,函數F(x)在(﹣1,﹣1+ )上單調遞減;
F′(x)>0,可得>﹣1+ ,函數F(x)在(﹣1+ ,+∞)上單調遞增.
綜上所述,當m≤0時,F(x)的減區間是(﹣1,+∞);
當m>0時,F(x)的減區間是(﹣1,﹣1+ ),
增區間是(﹣1+ ,+∞)
(Ⅱ)函數f(x)=mln(x+1)在點(a,mln(a+1))處的切線方程為y﹣mln(a+1)= (x﹣a),
即y= x+mln(a+1)﹣ ,
函數g(x)= 在點(b, )處的切線方程為y﹣ = (x﹣b),
即y= x+
y=f(x)與y=g(x)的圖象有且僅有一條公切線
所以 = (1),mln(a+1)﹣ = (2),
有唯一一對(a,b)滿足這個方程組,且m>0
由(1)得:a+1=m(b+1)2代入(2)消去a,整理得:
2mln(b+1)+ +mlnm﹣m﹣1=0,關于b(b>﹣1)的方程有唯一解
令t(b)=2mln(b+1)+ +mlnm﹣m﹣1,
t′(b)= = ,
方程組有解時,m>0,所以t(b)在(﹣1,﹣1+ )單調遞減,在(﹣1+ ,+∞)上單調遞增.
所以t(b)min=t((﹣1+ )=m﹣mlnm﹣1.
由b→+∞,t(b)→+∞;b→﹣1,t(b)→+∞,
只需m﹣mlnm﹣1=0
令u(m)=m﹣mlnm﹣1,u′(m)=﹣lnm在m>0為單減函數,
且m=1時,u′(m)=0,即u(m)min=u(1)=0,
所以m=1時,關于b的方程2mln(b+1)+ +mlnm﹣m﹣1=0有唯一解.
此時a=b=0,公切線方程為y=x
【解析】(Ⅰ)求得F(x)的導數,討論當m≤0時,當m>0時,由導數大于0,可得增區間;導數小于0,可得減區間,注意定義域;(Ⅱ)分別求出f(x),g(x)在切點處的斜率和切線方程,化為斜截式,可得y=f(x)與y=g(x)的圖象有且僅有一條公切線等價為 = (1),mln(a+1)﹣ = (2),有唯一一對(a,b)滿足這個方程組,且m>0,消去a,得到b的方程,構造函數,求出導數和單調性,得到最值,即可得到a=b=0,公切線方程為y=x.
【考點精析】解答此題的關鍵在于理解利用導數研究函數的單調性的相關知識,掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果,那么函數在這個區間單調遞增;(2)如果,那么函數在這個區間單調遞減.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】20世紀70年代,流行一種游戲﹣﹣﹣角谷猜想,規則如下:任意寫出一個自然數n,按照以下的規律進行變換:如果n是個奇數,則下一步變成3n+1;如果n是個偶數,則下一步變成 ,這種游戲的魅力在于無論你寫出一個多么龐大的數字,最后必然會落在谷底,更準確的說是落入底部的4﹣2﹣1循環,而永遠也跳不出這個圈子,下列程序框圖就是根據這個游戲而設計的,如果輸出的i值為6,則輸入的n值為(
A.5
B.16
C.5或32
D.4或5或32

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足 . (Ⅰ)求角C的值;
(Ⅱ)若a=5,△ABC的面積為 ,求sinB的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】執行如圖的程序框圖,則輸出K的值為(
A.98
B.99
C.100
D.101

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】非零向量 , 的夾角為 ,且滿足| |=λ| |(λ>0),向量組 , 由一個 和兩個 排列而成,向量組 , , 由兩個 和一個 排列而成,若 + + 所有可能值中的最小值為4 2 , 則λ=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a,b分別是△ABC內角A,B的對邊,且bsin2A= acosAsinB,函數f(x)=sinAcos2x﹣sin2 sin 2x,x∈[0, ].
(Ⅰ)求A;
(Ⅱ)求函數f(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 為f(x)的零點,x= 為y=f(x)圖象的對稱軸,且f(x)在( , )上單調,則ω的最大值為(
A.11
B.9
C.7
D.5

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓E:x2+3y2=m2(m>0)的左頂點是A,左焦點為F,上頂點為B.
(1)當△AFB的面積為 時,求m的值;
(2)若直線l交橢圓E于M,N兩點(不同于A),以線段MN為直徑的圓過A點,試探究直線l是否過定點,若存在定點,求出這個定點的坐標,若不存在定點,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設各項均為正數的數列{an}和{bn}滿足:對任意n∈N* , an , bn , an+1成等差數列,bn , an+1 , bn+1成等比數列,且a1=1,b1=2,a2=3.
(Ⅰ)證明數列{ }是等差數列;
(Ⅱ)求數列{ }前n項的和.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视