【題目】已知函數.
(1)若對
恒成立,求實數
的取值范圍;
(2)是否存在整數,使得函數
在區間
上存在極小值,若存在,求出所有整數
的值;若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】某校高三一次月考之后,為了為解數學學科的學習情況,現從中隨機抽出若干名學生此次的數學成績,按成績分組,制成了下面頻率分布表:
組號 | 分組 | 頻數 | 頻率 |
第一組 | 5 | 0.05 | |
第二組 | 35 | 0.35 | |
第三組 | 30 | 0.30 | |
第四組 | 20 | 0.20 | |
第五組 | 10 | 0.10 | |
合計 | 100 | 1.00 |
(1)試估計該校高三學生本次月考的平均分;
(2)如果把表中的頻率近似地看作每個學生在這次考試中取得相應成績的概率,那么從所有學生中采用逐個抽取的方法任意抽取3名學生的成績,并記成績落在中的學生數為
,
求:①在三次抽取過程中至少有兩次連續抽中成績在中的概率;
②的分布列和數學期望.(注:本小題結果用分數表示)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合P={x|a+1≤x≤2a+1},Q={x|1≤2x+5≤15}.
(1)已知a=3,求(RP)∩Q;
(2)若P∪Q=Q,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2017屆江蘇如東高級中學等四校高三12月聯考】已知數列滿足
,
,且對任意
,
都有
.
(1)求,
;
(2)設(
).
①求數列的通項公式;
②設數列的前
項和
,是否存在正整數
,
,且
,使得
,
,
成等比數列?若存在,求出
,
的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)若對
恒成立,求實數
的取值范圍;
(2)是否存在整數,使得函數
在區間
上存在極小值,若存在,求出所有整數
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點
,橢圓
的左,右頂點分別為
.過點
的直線
與橢圓交于
兩點,且
的面積是
的面積的3倍.
(Ⅰ)求橢圓的方程;
(Ⅱ)若與
軸垂直,
是橢圓
上位于直線
兩側的動點,且滿足
,試問直線
的斜率是否為定值,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了預防流感,某學校對教室用藥熏消毒法進行消毒,已知藥物釋放過程中,室內每立方米空氣中的含藥量y(毫克)與時間t(小時)成正比;藥物釋放完畢后,y與t的函數關系式為 (a為常數),如圖所示.根據圖中提供的信息,回答下列問題:
(1)從藥物釋放開始,每立方米空氣中的含藥量y(毫克)與時間t(小時)之間的函數關系式為_________;
(2)據測定,當空氣中每立方米的含藥量降低到0.25毫克以下時,學生方可進教室,那么從藥物釋放開始,至少需要經過_________小時后,學生才能回到教室.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com