【題目】為了解某地網民瀏覽購物網站的情況,從該地隨機抽取100名網民進行調查,其中男性、女性人數分別為45和55.下面是根據調查結果繪制的網民日均瀏覽購物網站時間的頻率分布直方圖,將日均瀏覽購物網站時間不低于40分鐘的網民稱為“網購達人”,已知“網購達人”中女性有10人.
(1)根據已知條件完成下面的列聯表,并判斷是否有90%的把握認為是否為“網購達人”與性別有關;
非網購達人 | 網購達人 | 總計 | |
男 | |||
女 | 10 | ||
總計 |
(2)將上述調査所得到的頻率視為概率,現在從該地的網民中隨機抽取3名,記被抽取的3名網民中的“網購達人”的人數為X,求X的分布列、數學期望和方差
.
參考公式:,其中
.
參考數據:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)列聯表見解析,有把握;(2)分布列見解析,,
.
【解析】
(1)根據頻率分布直方圖可得相關數據填入列聯表中,再利用卡方系數的計算公式,即可得答案;
(2)由頻率分布直方圖知,“網購達人”對應的頻率為,
將頻率視為概率即從該地隨機抽取1名網民,該網民是“網購達人”的概率為,且X服從二項分布,利用公式可求數學期望
和方差
.
(1)由頻率分布直方圖可知,在抽取的100人中,“網購達人”有
(人).
補充完整的列聯表如下:
非網購達人 | 網購達人 | 總計 | |
男 | 30 | 15 | 45 |
女 | 45 | 10 | 55 |
合計 | 75 | 25 | 100 |
所以有90%的把握認為是否為“網購達人”與性別有關.
(2)由頻率分布直方圖知,“網購達人”對應的頻率為,
將頻率視為概率即從該地隨機抽取1名網民,該網民是“網購達人”的概率為.
由題意知,
從而X的分布列為
X | 0 | 1 | 2 | 3 |
P |
由二項分布的數學期望與方差公式得
,
,
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中, 平面
平面
,
.
(1)求證:平面
;
(2)求直線與平面
所成角的正弦值;
(3)在棱上是否存在點
,使得
平面
?若存在, 求
的值;若不存在, 說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2013年5月,華人數學家張益唐的論文《素數間的有界距離》在《數學年刊》上發表,破解了困擾數學界長達一個多世紀的難題,證明了孿生素數猜想的弱化形式,即發現存在無窮多差小于7000萬的素數對.這是第一次有人證明存在無窮多組間距小于定值的素數對.孿生素數猜想是希爾伯特在1900年提出的23個問題中的第8個,可以這樣描述:存在無窮多個素數,使得
是素數,素數對
稱為孿生素數.在不超過16的素數中任意取出不同的兩個,則可組成孿生素數的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線
的參數方程為
(t為參數),以直角坐標系
的
點為極點,
為極軸,且長度單位相同,建立極坐標系,得曲線
的極坐標方程為
.
(1)求直線的傾斜角;
(2)若直線與曲線
交于
,
兩點,求
的長度.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某連鎖超市旗艦店在元旦當天推出一個購物滿百元抽獎活動,凡是一次性購物滿百元者可以從抽獎箱中一次性任意摸出2個小球(抽獎箱內共有5個小球,每個小球大小形狀完全相同,這5個小球上分別標有1,2,3,4,5 這5個數字).
(1)列出摸出的2個小球的所有可能的結果.
(2)已知該超市活動規定:摸出的2個小球都是偶數為一等獎;摸出的2個小球都是奇數為二等獎.請分別求獲得一等獎的概率與獲得二等獎的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線,過
的直線
與拋物線C交于
兩點,點A在第一象限,拋物線C在
兩點處的切線相互垂直.
(1)求拋物線C的標準方程;
(2)若點P為拋物線C上異于的點,直線
均不與
軸平行,且直線AP和BP交拋物線C的準線分別于
兩點,
.
(i)求直線的斜率;
(ⅱ)求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設三棱錐的底面是正三角形,側棱長均相等,
是棱
上的點(不含端點),記直線
與直線
所成角為
,直線
與平面
所成角為
,二面角
的平面角為
,則( )
A. B.
C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中醫藥研究所研制出一種新型抗癌藥物,服用后需要檢驗血液是否為陽性,現有份血液樣本每個樣本取到的可能性均等,有以下兩種檢驗方式:(1)逐份檢驗,則需要檢驗
次;(2)混合檢驗,將其中
份血液樣本分別取樣混合在一起檢驗,若結果為陰性,則這
份的血液全為陰性,因而這
份血液樣本只需檢驗一次就夠了;若檢驗結果為陽性,為了明確這
份血液究竟哪份為陽性,就需要對這
份再逐份檢驗,此時這
份血液的檢驗次數總共為
次假設在接受檢驗的血液樣本中,每份樣本的檢驗結果總陽性還是陰性都是相互獨立的,且每份樣本是陽性的概率為
.
(1)假設有6份血液樣本,其中只有兩份樣本為陽性,若采取遂份檢驗的方式,求恰好經過兩次檢驗就能把陽性樣本全部檢驗出來的概率.
(2)現取其中的份血液樣本,記采用逐份檢驗的方式,樣本需要檢驗的次數為
;采用混合檢驗的方式,樣本簡要檢驗的總次數為
;
(。┤,試運用概率與統計的知識,求
關于
的函數關系
,
(ⅱ)若,采用混合檢驗的方式需要檢驗的總次數的期望比逐份檢驗的總次數的期望少,求
的最大值(
,
,
,
,
,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點,直線
:
,點
為
上一動點,過
作直線
,
為
的中垂線,
與
交于點
,設點
的軌跡為曲線Γ.
(1)求曲線Γ的方程;
(2)若過的直線與Γ交于
兩點,線段
的垂直平分線交
軸于點
,求
與
的比值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com